Gefördert durch:

Industrial Research on the Design of Wind Turbines for Icing Conditions

Inken Knop, Stephan Bansmer (TUBS) Khalid Abdellaoui, Muhanad Mahmoud, Andree Altmikus (WRD)

Goals in Research Project Drifa

- Experimental validation of commercial icing codes
- Numerical & experimental investigation of the influence of 2D /3D ice accretion on blade aerodynamics
- De-icing and anti-icing functionality of blade heating systems in wind tunnel experiments

Braunschweig Icing Wind Tunnel

Boundary Conditions: $U_{\infty} = 10 \text{ to } 40 \text{ m/s}$ $T = -20 \text{ to } +30 \text{ }^{\circ}\text{C}$ $MVD = 9 \text{ to } 48 \text{ }\mu\text{m}$ $LWC = 0.1 \text{ to } 2 \text{ g/m}^3$

Reynolds number up to 2.3x10⁶

Technische Universität Braunschweig

Wind Tunnel Model

- Inner structure adapted to original rotor blades with
 - Fiberglass,
 - Balsa wood,
 - PET rigid foam
- Instrumented with 50 Pt1000 temperature sensors

Goal:

 Model as realistic as possible to avoid scaling difficulties

Experimental Ice Shape Generation

2D Ice Shape

- Melting a specific cut in the twodimensionally iced area
- Tracing the mean ice contour
- Digitizing the drawing

3D Ice Shape

- Creating a negative from the ice shape with low viscosity platinum silicone
- Casting positive with two component polyurethane mixture
- 3D scan of positive for digitizing
- Average over two-dimensionally iced cross-section

Numerical ice shape generation

LEWICE (NASA)

Boundary Conditions Aircraft – Wind turbines

Variable	Validation Range Lewice 3.2	Our Experiments
Time	2 - 45 min	5 - 15 min
Chord	35,3 - 198,12 cm	75 cm
АоА	-4°- +7°	-4°, 0°,+4°
Velocity	56 - 146 m/s	10, 20, 30, 40 m/s
Reynolds Number	2,26x10 ⁶ - 13x10 ⁶	0,57x10 ⁶ - 2,55x10 ⁶
Mach Number	0,17 - 0,45	0,03 - 0,125
LWC	0,31 - 1,8 g/m³	0,17 - 0,96 g/m³
MVD	15 - 270 μm	14 - 48 µm
Temperature	-31,7 to -3,3°C	-20°C to -3°C

Computational Results for Rime Ice Conditions

Experiment vs. Computation for Rime Ice Conditions

Computational Results for Glaze Ice Conditions

Experiment vs. Computation for Glaze Ice Conditions

Summary: Computation vs. Experiment

Rime Ice Conditions

- Position of maximal thickness
- ✓ Absolute value of maximal thickness
- ✓ Icing limits
- Small deviations in areas with single feathers

Glaze Ice Conditions

- ✓ Icing limits
- Position of maximal thickness (horns)
- Absolute value of maximal thickness
- Large deviations in areas with single needles

