

VTT TECHNICAL RESEARCH CENTRE OF FINLAND LTD Wind Power Tuomas Jokela, Mikko Tiihonen & Timo Karlsson Winter Wind 2019 Umeå, Sweden

Outline

Purpose of Validation Campaign	p. 3
 VTT Icing Wind Tunnel (IWT) Validation Conditions 	p. 4
 Cloud Droplet Measurement Probes 	p. 5
Methods in the Validation Measurements	p. 6
 Results of Validation Measurements 	p. 7 - 8
 Updated VTT IWT operating parameters 	p. 9
Summary	p. 10
References	p. 11

2

Purpose of Validation Campaign

- Need for improving the knowledge of operating conditions in the icing wind tunnel (IWT) test section:
 - Median Volume Diameter MVD [μm] and Droplet Size Distribution DSD [μm]
 - Liquid Water Content LWC [g/m³]
- The main target was to improve the tests repeatability and accuracy
- Operating the VTT icing wind tunnel in the validated conditions:
 - enables precise inputdata for the R&D work (ice accretion models)
 - gives more valuable measurement data or solutions for customer needs
- Validation measurements executed in summer 2018. The following partners enabled this measurement campaign:
 - The Finnish Meteorological Institute (FMI)
 - University of Oulu
 - Technical University of Denmark (DTU)

Icing Wind Tunnel Validation Conditions

Comparable validation conditions:

- Temperature -5°C
- Relative humidity (90...95) %
- Flow Velocity 7 m/s & 10 m/s
- 3 x different water spraying levels
- 2 x different atomizing air levels

Cloud Droplet Measurement Probes

Methods in the Validation Measurements

Calibrated parameter:

Temperature [°C]
Relative humidity [RH %]
Wind Speed [m/s]
Water [kg/h]

IWT test section:

Droplet size, MVD [µm] Validated with FMI CDP, ICEMET & DTU CDP measurements

More accurate LWC value: Calculation is based on ISO12494 (Atmospheric icing of structures)

01/02/2019 VTT – beyond the obvious

Results of Validation Measurements

Differences between cases?

Case 1. vs. Case 3.

- Effected by sprayed water [kg/h] ~ 2 x higher
- LWC [g/m³] value ~ 2 x higher

Case 1. vs. Case 4

- Effected by atomizing air [l/min] ~ 2 x higher
- MVD [µm] value decreases

Case 4. & Case 5.

- Effected by sprayed water [kg/h] ~ 2 x higher
- LWC [g/m³] value ~ 2 x higher

	Case 1.	Case 2.	Case 3.	Case 4.	Case 5.
VTT IWT LWC _{Theoretical} [g/m3]	0,25	0,44	0,44	0,25	0,44
ICEMET					
MVD [μm]	25,5±0,7	24,3±0,4	25,7±0,5	16,1±0,3	16,6±0,2
LWC [g/m ³]	0,27±0,03	0,42±0,03	0,48±0,02	0,22±0,03	0,46±0,05
CDP FMI					
MVD [μm]	18,5±1,7	17,8±1,4	-	13,5±0,4	14,1±1,0
LWC [g/m ³]	0,45±0,06	0,81±0,12	-	0,56±0,14	0,84±0,33
CDP DTU					
MVD [μm]	18,5±1,6	18,8±1,7	-	13,8±0,8	-
LWC [g/m ³]	0,34±0,05	0,74±0,13	-	0,52±0,10	-

Comparison of MVD [µm] & LWC [g/m³] case by case:

- MVD: ICEMET measured higher values than both CDP probes
- MVD: CDP (FMI) probe measured almost equal values compared to CDP (DTU) probe
- LWC: The calculated LWC_{Theoretical} values are almost identical compared to measured ICEMET values!
- LWC: Both CDP probes measured higher values than ICEMET probe
- LWC: Between CDP probes small differences in measured values can be seen

Results of Validation Measurements

MVD range:

- CDP (2...50) µm
- ICEMET (5...200) μm

Observed during the tests:

- ICEMET detected droplets with MVD [μm] value higher than 50 μm!
- Therefore ICEMET results were used to evaluate the new IWT operating conditions.

DSD comparison example:

- Case 1. The bigger droplets are highlighted (lower atomizing air were used)
- Case 4. The smaller droplets are highlighted (higher atomizing air were used)

Updated VTT IWT operating parameters

Validated Conditions: T=-5°C & WS=10 m/s

- MVD level 1. ~ 25 µm
 - LWC 0,2 ... 0,3 g/m³ Typical Icing
 - LWC 0,5 g/m³ Severe Icing

- MVD level 1. ~ 16 µm
 - LWC ~ 0,2 g/m³ Typical Icing

• LWC ~ 0.5 g/m³ Severe Icing

Operating regime:

- Wind speed upto 20 m/s
 - Can be operated hours
- Wind speed (20 50) m/s
 - Can be operated shorter periods and has to be assessed case by case
- Temp. range: +25°C ... -25°C

Summary

- In the planning phase, we considered what could be the suitable size of test matrix...
 - Number of variables to reach enough large scale of operating parameters?
 - Repeatability
 - Comparability with the three independent devices
- Time consuming, but fruitful project!
 - laboratory work & data-analysis
- We were a bit surprised that small amount of droplets in the test section were higher than 50 μm!
- The calculated LWC_{Theoretical} values are almost identical compared to measured ICEMET probe LWC values
- After this project we have better understanding:
 - about our icing wind tunnel operating regime
 - how to control the droplet characteristics
 - how to improve our test matrix in the future
 - how to rerun some extra tests
- Challenging task to validate the IWT operating conditions!

References

- ICEMET probe (http://www.oulu.fi/icemet/)
- CDP probe (<u>http://www.dropletmeasurement.com/cloud-droplet-probe-cdp-2</u>)
- Atmospheric icing of structures. ISO 12494 International Standard. First edition 2001-08-15. p. 66

01/02/2019 VTT – beyond the obvious

Thank You!

