Wind Turbine Rotor Icing Detectors Performance Evaluation

Charles Godreau, P.Eng., M.Eng.
WinterWind 2019
Umeå, Sweden
February 6, 2019

Ice formation on the wind turbine blades

Degrades aerodynamic performance

Estimated losses of $100 \mathrm{M} \$$ per year in Canada

Is a significant health and safety issue

淀 $=0$ O 0 O Rotor Icing Detectors

Rotor icing detectors measure icing directly on the wind turbine blades

Common method for detecting rotor icing: power curve

Main limitation: does not work at standstill

Useful to investigate rotor to instrumental icing relationship

Wind turbine blade ice accretion: A correlation with nacelle ice accretion
Nicolas Jolin*, Dominic Bolduc, Nigel Swytink-Binnema, Gabriel Rosso, Charles Godreau

Fig. 6. Modelled ice accretion rates along the blade length.

Fig. 11. Blade and nacelle linear ice mass densities for an operating turbine over different wind speeds.

Fig. 12. Modelled and on-site Relation between blade and nacelle ice accretion rates.

Weidmiller シ
BLADEControl [1, 2, 3]

fos 4 X
Rotor Ice Control
[1, 2, 4]

Wölfel
IDD.Blade
[1, 2, 5]

eologix
$[1,2,6]$

All certified components by DNV-GL
No independent performance study completed yet
$N_{* * \infty}$

How do they perform?

Research $\Rightarrow \begin{aligned} & \text { Industry } \\ & \text { Adoption }\end{aligned} \Rightarrow$ Standard

In line with IEA Wind TCP Task 19 Objectives

Performance Evaluation Guidelines for Ice Detection Systems coming in 2020

Commissioning of the rotor detectors*: 2015-2017

Nergica study over winter 2017-2018

Compare the performance of three rotor ice detectors*
Propose two reference methods
Define 4 Key Performance Indicators (KPI)

Senvion MM92 2.05 MW

Nergica Test Site Gaspé, Canada

*Tested rotor icing detectors Weidmiller $\mathfrak{\Sigma}$ fos4X eologix̌

Not tested

2 Hub Cameras

Wind Turbine Control System*

0 - No Ice

1 - Light Icing

2 - Medium Icing

3 - Severe Icing

Normal Operation

Anemometer Icing

Reduced Performance

Turbine
Stopped
*Turbine is not required to stop has soon has icing is detected

(Availability

Is the system able to detect icing?

(C) Icing Time

Is the system detecting all icing events?

Icing Severity

Does the system indicate the right amount of icing?

Icing Detection Range

Time Accuracy
Is the icing detected at right time?
Skill Scores H: Hit rate F: False alarm rate KSS: H-F
KSS Range - Total icing detection*

（4）Time Accuracy

How thresholds affect detection？

Skill score variation against threshold settings

Rotor icing detectors show good availability
High variability in icing detection due to different thresholds/technologies used

Detector selection depends on application and required sensitivity
Other metrics to be considered: - Cost (system + installation + maintenance)

- Durability

Full study coming out in March 2019

NERGICA

T +1 418 368-6162 | cgodreau@nergica.com

-

[1] IEA Wind TCP Task 19, "Available Technologies for Wind Energy in Cold Climates", 2018.
[2] R. Cattin and D.U. Heikkilä, "Evaluation of ice detection systems for wind turbines", Meteotest, Bern, 2016.
[3] Weidmüller, "Rotor blade monitoring with BLADEcontrol". [Online].
Available: https://www.weidmueller.com/int/industries/energy/wind-energy/rotor-blade-monitoring [Accessed: 2019-01-24].
[4] fos 4 X , "fos4Blade - open sensor platform for rotor blades of wind turbines - fos 4 X ". [Online]. Available: https://www.fos4x.de/en/fos4blade-hardware/. [Accessed: 2019-01-24].
[5] Wölfel, "Ice Detection | Wölfel". [Online].
Available: https://www.woelfel.de/en/industries/wind-energy/ice-detection.html. [Accessed: 2019-01-24].
[6] Eologix, "Eologix Sensor Technology | wireless temperature and icing sensor system for rotor blades." [Online]. Available: https://eologix.com/en/home/. [Accessed: 2019-01-24].

