

To heat or not to heat ? Xavier VANWIJCK (CTO) – <u>xva@XANT.com</u> XANT company – www.XANT.com

WWW.XANT.COM

WIND POWER MADE EASY

- Mid sized wind turbines ✓ 50 - 500 kW
- Applications
 ✓ On-site generation
 ✓ Off-grid systems
- ✓ Drivers
 - ✓ Fuel- & battery saver
 - Hedge against volatile energy prices
 - ✓ Smart-grid enabler
 - ✓ Land mark

TECHNICAL SPECIFICATIONS

- XANT M-21 / 24
 - ✓ 100 kW
 - ✓ Direct drive
 - ✓ Total height max 50 m
 - ✓ Design DNV-GL certified
 - ✓ Certified power curve
 200.000 kWh @ 5.2 m/s
 - ✓ Certified noise curve39 dB(A) @ 200 m
- XANT L-33
 - ✓ 330 kW
 - ✓ Direct drive
 - ✓ Total height max 55 m

✓ Under Development

Results - Failure Rate (all downtime events)

Percentage contribution to overall failure rate

DESIGNED FOR RELIABILITY

- Just Enough Essential Parts JEEP
- Elimination of most-failureprone parts

DESIGNED FOR TRANSPORT

- All parts fit in a 40" container
- Lowest transport cost
 - Possibility to deliver to remote locations

NOTHERN REGIONS "MARKET STUDY"

- Remote communities
- Low solar irradiation
- Good wind resources

COLD-CLIMATE STRATEGY

Distinction between two modes/purposes:

- Operation at low-temperatures (down to -40°C)
- Ice throw mitigation measures
 - Prediction
 - Environmental conditions
 - Detection
 - Ice detector on the blades
 - Under-performance
 - Prevention
 - Dark blades
 - Ice-phobic coating
 - Blade heating

TEST AT THE OWI LAB (June 2016)

4 test days in June 2016

Purpose

- General behavior of the nacelle + converter
- Identification of the weak points and their possible solutions
- Heating blankets on the brakes
- Blade heating system
- Specific bearing grease
- Specific oil in the yaw gearboxes

TEST AT THE OWI LAB (June 2016) – Setup

- Complete nacelle without blades
- Generator in motor mode (from 30 to 60 RPM)
- Yaw motion
- Converter in the room with the nacelle (conservative setup)
- Heated anemometer

TEST AT THE OWI LAB (June 2016) - Setup

Temperature sensors

- Both generator bearings
- Yaw gearbox
- Electro-mechanical brakes (inside the blankets)
- Incoming air of the blade heating device
- Outcoming air of the blade heating device
- Incoming air at blade root
- Thermic recording of the nacelle from different point of view
- Converter (several points inside) Current
- Generator
- Yaw drives

TEST AT THE OWI LAB Experimentation phases

- Continuous operation in decreasing outside temperature (staircase profile)
- Operation @ -40°C
- Short stop @ -40°C
- Cold start @ -40°C
- Icing

TEST AT THE OWI LAB (June 2016)

Lessons learnt

- Power consumption of about 12 kW (balanced by additional yield due to more dense air)
- Cold start at -40°C is the most demanding
 - Yaw gearboxes were blocked
 - Brittle cables
 - Power converter didn't start (hair dryers to increase its temperature at -20°C)
 - Generator bearings were ok
 - ...
- Heating blankets is the best power consumption/heating benefit ratio
- Sonic anemometer must be heated
- Stator heater in the generator

TEST AT THE OWI LAB October 2017

2 days in October 2017 Purpose

- To identify the icing patterns on the blades
- To precisely define the best location of the ice-detection sensor
- Test of the ice-detection sensor operation

PILOT POINT I & II Alaska - USA

287.000 kWh

TEST IN THE FIELD Since October 2018

Installation in Alaska during fall 2018

- Two XANT M-21 ETR
- Tilt-up execution

TEST IN THE FIELD Since October 2018

Experimental process:

- ✓ Test of the blade heating system at different power levels
- ✓ Test of the heating blankets
- ✓ Test of the icing sensor system
- ✓ Test of the heated anemometer

 \rightarrow 96% availability since commissioning end of October

Next steps:

Effect of the ice-phobic coatings on the de-icing timing (both at OWI-Lab and in the field)

To heat or not to heat ?

Xavier VANWIJCK (CTO) – XANT company

xva@XANT.com – www.XANT.com