Labkotec ice detector research results from wind turbine field tests and icing wind tunnel tests

Winterwind 2019, Umeå, Sweden

Company: Labkotec Oy Author: Tatu Muukkonen (Product Manager)

Contents of the presentation

- 1. Blade-mounted ice detector
- 2. LID-3300IP Type 2 Certification and performance test
- 3. Melting and ablation tests in icing wind tunnel
- 4. Overvoltage protection package for LID-3300IP
- 5. Warning light system for wind park
- 6. Summary

History of the blade-mounted ice detector 1994

First ever blade-mounted Ice detector was delivered by Labko Oy (nowadays Labkotec Oy) to Finland, Pyhätunturi, 1994.

 \rightarrow Start blade heating

Figure BF. The first blade mounted ice detector delivered by Labko Oy. Pyhätunturi test station 1994.

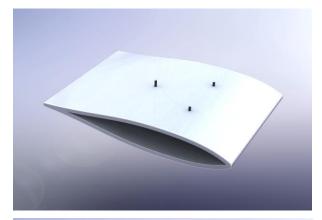
Winterwind 2019 / Labkotec Oy

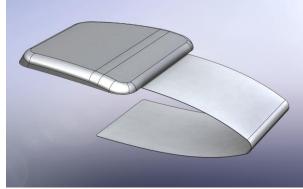
Status of the blademounted ice detectors

- Labkotec is developing new generation ice detection system
- Ice sensors are mounted on the turbine blades
- Direct ice accumulation measurement and ice detection from the blades
- Radio communication between the sensors and the control unit.

Blade-mounted ice detector system

Symbols explanations


- 1 to 9 pcs blade-mounted ice sensors including radio transmitter
 - LID/ISD nacelle-mounted sensor
- Control unit and radio receiver inside the nacelle

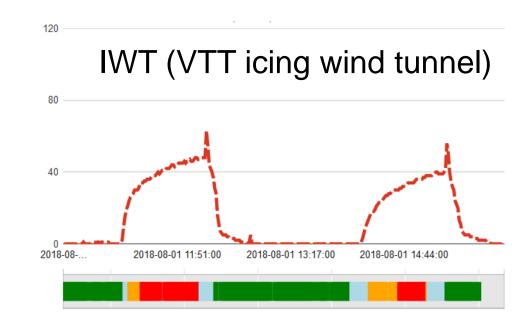


Blade-mounted ice detector specification

- Dimensions. Box for electronics is about 22 x 230 x 270 mm. Flexible sensor strip is about 1 x 165 x 550 mm.
- Blade-mounted sensor weight is about 950 g
- Pictures show simplified examples.

Blade-mounted ice detector installation example

Preparation

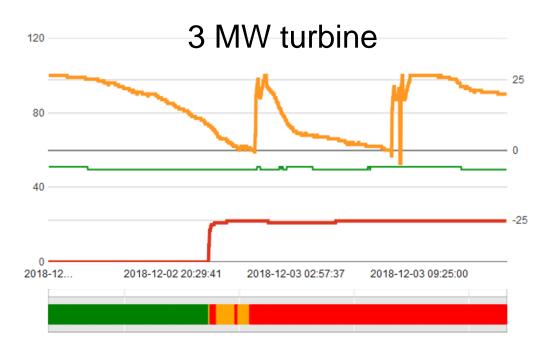

• Metallic inserts are embedded on the blade surface before installation.

Installation

- Box for electronics by metallic inserts.
- Flexible sensor strip by adhesive.

Analysis of blade-mounted ice detectors

- Ice index (red line) shows how ice accumulates or disappears on the blade ice detector.
- Index analysis (green, yellow, red, blue) shows what's happening on the blade:
 - Safe (green)
 - Ice formation (yellow)
 - Ice warning (red)
 - Wet (blue).



" Presenting ice detector research results from wind turbine field tests and icing wind tunnel tests "

Winterwind 2019 / Labkotec Oy

Analysis of blade-mounted ice detectors

- Ice signal (yellow line) and temperature (green line) are references taken from nacelle ice detector
- Ice index (red line) shows how ice accumulates or disappears on the blade ice detector
- Index analysis (green, yellow, red) shows what's happening on the blade:
 - Safe (green)
 - Ice formation (yellow)
 - Ice warning (red).

" Presenting ice detector research results from wind turbine field tests and icing wind tunnel tests "

Winterwind 2019 / Labkotec Oy

History of the nacelle-mounted ice detectors

			C C C C C C C C C C C C C C C C C C C	
	LID-3210C Control Unit and Ice Sensor	LID-3210D Control Unit with – Ice Alarm LED – Test button	LID/IS Ice Sensor – Sensitivity improved	LID-3300IP Control Unit – Web server (remote access) LID/ISD Ice Sensor – Sensitivity further improved LID-3300IP Type 2 (2018 ->) NEW!
1994 ->	20022008	1Q/20082014	4Q/20082014	1Q/2010 ->

Winterwind 2019 / Labkotec Oy

NEW! LID-3300IP Type 2

Functional safety:

- Functional safety level has been further improved from PLb to PLd
- According to the standard ISO 13849-1.

Compatibility:

Fully compatible with current LID-3300IP; same features, interfaces and look and feel.

System interfaces:

- Power
- Signal
- Heating
- RS-232
- Analog outputs
- Relay outputs
- Ethernet RJ-45
- Optical fibre.

Interface upgrades:

- Improved transient voltage protection
- RS-232 and analog outputs isolated
- Safety relay outputs with feedback
- Easy access connectors.

Ice alarm test:

 Ice sensor starts sending low signal levels, which simulate a real icing condition

Winterwind 2019 / Labkotec Oy

• Therefore, the whole chain of safety functions will be tested.

DNV.GL

COMPONENT CERTIFICATE

Certificate No.: CC-GL-IV-1-03644-1 Valid until: 2023-09-23

Issued for: LID-3300IP Ice Detector Systems Type 1 and Type 2

2018-11-26

Specified in Annex 1

Issued to:

Labkotec Oy

Myllyhaantie 6 33960 Pirkkala, Finland

According to:

GL-IV-1:2010 Guideline for the Certification of Wind Turbines

Based on the documents:	
CR-DA-GL-IV-1-03644-1	Certification Report Design Assessment, dated 2018-11-26
CR-IPE-GL-IV-1-03644-0	Certification Report Implementation of design-related requirements in Production and Erection, dated 2018-09-24
10085404	Quality System Certificate issued by Lloyd's Register Quality Assurance Limited, Branch Office Finland, dated 2018-05-24, valid until 2019-02-28
VTT-C-12287-60-18	Quality System Certificate issued by VTT Expert Services Ltd, dated 2018-03-09, valid until 2021-03-08
FCR-CC-GL-IV-1-03644-1	Final Certification Report, dated 2018-11-26

Changes of the system design, the production or the manufacture 's quality system are to be approved by DNV GL.

DAkkS

ding DIN EN IECIISO 1

Hamburg, 2018-11-26

Hamburg, 2018-11-26

For DNV GL Renewables Certification

For DNV GL Renewables Certification Fable Pollicing Service Line Leader

B D, Konte

LID-3300IP

DNV-GL component certificate:

- "Safe to use in wind turbine"
- "Detects in-cloud and freezing rain ice"
- Updated 2018-11-26 to cover both Type 1 and Type 2 versions.

Winterwind 2019 / Labkotec Oy

	ificate 1	ÜVRheinland
Certificate no.	CU 72131267 01	
License Holder: Labkotec Oy Myllyhaantie 6 FI-33960 Pirkkala Finland	Manafaturing Plant: Jotel cy Tikontie 1 36241 Kangasala Finland	
	31282519 001 Client Reference: Jarkko Lator	nen
IEC 610 CAN/CSJ	10-1:2004 R10.08 010-2-010:2003 A-C22.2 NO. 61010-1-04+GII (R2009) A-C22.2 NO. 61010-2-010-04 (R2009)	
IEC 61(CAN/CS) CAN/CS)	010-2-010:2003 A-C22.2 NO. 61010-1-04+0311 (R2009) A-C22.2 NO. 61010-2-010-04 (R2009)	Jeense Fee - Units
IEC 61(CAN/CS) CAN/CS)	010-2-010:2003 A-C22.2 NO. 61010-1-04+GTI (R2009) A-C22.2 NO. 61010-2-010-04 (R2009) etector for Wind Turbines	Jeense Fee - Units 7
IEC 61 CAN/CSJ CAN/CSJ Certified Product: Ice De Model Designation: Rated Voltage:	010-2-010:2003 A-C22.2 NO. 61010-1-04+GTI (R2009) A-C22.2 NO. 61010-2-010-04 (R2009) etector for Wind Turbines I 1) Control Unit: LID-3300IP 2) Ice Sensor Unit: LID/ISD Ice Sensor 1) AC 230V, 50/60Hz (Load: AC 230V) 2) AC 230V 2) AC 230V	
IEC 511 CRAN/CSJ CAN/CSJ Cettified Product: Ice De Model Designation: Rated Voltage: Rated Power: Protection Class; Ingress Protection	010-2-010:2003 A-C22.2 NO. 61010-1-04+GTI (R2009) A-C22.2 NO. 61010-2-010-04 (R2009) etector for Wind Turbines 1) Control Unit: LID-3300IP 2) Ice Sensor Unit: LID/ISD Ice Sensor 1) AC 230V, 50/60Hz (Load: AC 230V) 2) AC 230V, 1) 7VA (Load: 350W) 2) 350W 1 2) Efector 0 be installed with an AC 230V wind	
IEC 511 CAN/CSJ CAN/CSJ CAN/CSJ CAN/CSJ Model Designation: Rated Voltage: Rated Power: Protection Class; Ingress Protection Decial Remarks: T	010-2-010:2003 A-C22.2 NO. 61010-1-04+GTI (R2009) A-C22.2 NO. 61010-2-010-04 (R2009) etector for Wind Turbines 1) Control Unit: LID-3300IP 2) Ice Sensor Unit: LID/ISD Ice Sensor 1) AC 230V, 50/60Hz (Load: AC 230V) 2) AC 230V, 1) 7VA (Load: 350W) 2) 350W 1 2) Efector 0 be installed with an AC 230V wind	

LID-3300IP

UL/CSA certificate:

- "Safe to use in wind turbine"
- Now selling also in the USA and Canada.

LID-3300IP Type 2 Functional safety

- Development on nacelle-mounted ice detector LID-3300IP Type 2 has been focusing on functional safety aspects.
- Improved safety aspects include, for example, safety relays where relay position is constantly monitored and a separate safety processor is applied to double check information inside the ice detector. Also more advanced diagnostics is included.
- Functional safety analysis has been carried out according to the standard ISO 13849-1. LID-3300IP base release has PL value b and LID-3300IP Type 2 has higher PL value d.

Ice detection performance tests: "Pre-certification of LID-3300IP Type 2"

The LID-3300IP Type 2 Ice Detector was tested at the VTT Icing Wind Tunnel (IWT) in the following conditions:

- typical in-cloud icing
- severe in-cloud icing
- freezing rain

Ice accretion simulations were done for NREL 5 MW reference wind turbine blade section number 9 (51,04 m - 54,46 m). The length of the reference turbine blade was 61.5 meter. (Report VTT-CR-06350-17).

" Presenting ice detector research results from wind turbine field tests and icing wind tunnel tests "

Winterwind 2019 / Labkotec Oy

LID-3300IP Type 2 Pre-certification Typical icing conditions

 Table 1. Summarization of Icing Wind Tunnel (IWT) test results and TURBICE™ simulation

 results (ice mass [kg/m] section no. 9 and ice thickness [mm]) in typical icing conditions. /1,

 4/

Icing Wind Tunnel Tests Standard Icing Condition 8540798 05 19 17	Average Time _[mm:ss]	Average deviation _[mm:ss]	Ice Mass [kg/m] Section no. 9 (50,7 m – 54,8 m)	lce Thickness [mm]
Amplitude 99 %	09:29	00:20	0,08	1
Amplitude 90 %	10:24	00:58		
Amplitude 80 %	10:46	00:55	0,09	1
Amplitude 70 %	12:12	00:20		
Amplitude 60 %	12:24	00:18	0,10	1
Amplitude 50 %	14:30	00:58		
Amplitude 40 %	15:56	00:39	0,13	2
Amplitude 30 %	16:51	01:05		
Amplitude 20 %	19:54	00:58	0,17	2

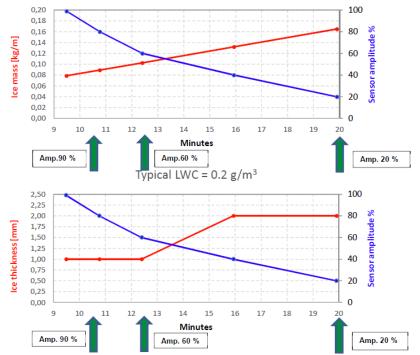


Figure 2. Illustration of TURBICE™ simulation results (ice mass [kg/m] & ice thickness [mm]) in typical icing conditions. /4/ At the icing alarm moment (~ 12,5 min - amplitude value 60 %) the simulated ice thickness was 1 mm and the simulated ice mass was 0,1 kg/m in the blade section no. 9. In the secondary Y-axis sensor amplitude value is presented as a function of time /1, 4/.

Winterwind 2019 / Labkotec Oy

LID-3300IP Type 2 Pre-certification Severe icing conditions

Table 2. Summarized VTT Icing Wind Tunnel test results and TURBICE[™] ice accretion simulations in severe icing conditions. /1, 4/

Icing Wind Tunnel Tests Standard Icing Condition 8540798 05 19 17	Average Time _[mm:ss]	Average deviation _[mm:ss]	Ice Mass [kg/m] Section no. 9 (50,7 m – 54,8 m)	lce Thickness [mm]
Amplitude 99 %	05:57	00:09	0,11	1
Amplitude 90 %	05:59	00:09		
Amplitude 80 %	06:20	00:09	0,11	1
Amplitude 70 %	06:45	00:31		
Amplitude 60 %	07:06	00:20	0,12	2
Amplitude 50 %	07:48	00:58		
Amplitude 40 %	08:42	00:34	0,15	2
Amplitude 30 %	08:56	00:38		
Amplitude 20 %	09:23	00:44	0,17	2

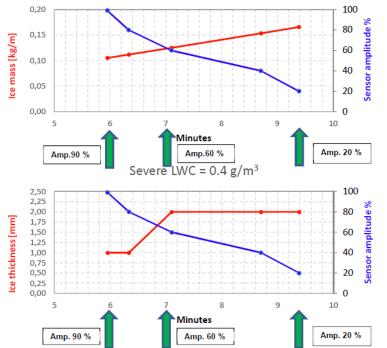
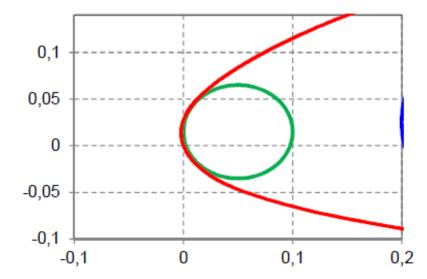


Figure 3. Illustration of TURBICE[™] simulation results (ice mass [kg/m] & ice thickness [mm]) in typical icing conditions. /4/ At the icing alarm moment (~ 7,0 min - amplitude value 60 %) the simulated ice mass was 0,12 kg/m and simulated ice thickness was 2 mm in the blade section no. 9. In the secondary Y-axis sensor amplitude value is presented as a function of time /1, 4/.

Winterwind 2019 / Labkotec Oy


Melting and ablation tests in the VTT Icing Wind Tunnel (IWT)

- The goal of these Icing Wind Tunnel tests was to estimate the time it takes for ice to melt and/or ablate from the diameter of 100 mm aluminium cylinder and reference blade profile. (Report VTT-CR-00542-18).
- The tests were part of the Pre-Certification of LID-3300IP Type 2 Ice Detector For Wind Energy Applications. (Report VTT-CR-06350-17).

Melting and ablation tests in the VTT Icing Wind Tunnel (IWT)

- The diameter of 100 mm aluminium test cylinder represents the leading edge curvature of reference NREL 5 MW of the wind turbine blade section close to the tip.
- Ice accretion temperature ~ -5 C
- Temperature ramping ~ -5...+3 C
- Rise of temperature ~ 2,8 C / hour
- Melting and ablation test temperature ~ +3 C.

Winterwind 2019 / Labkotec Oy

Test Results

Test No.	Cylinder No.	Specimen	lce Thickness [mm]	lce Removal [Yes/No/Partly]	Ice Removal & Test time [hh:mm]
Test IV	I	⊗ 100 mm	13	Yes	5:20
Test IV	II	⊗ 100 mm	13	Yes	5:44
Test IV		Profile	13	Yes	9:12

NEW! Protection package surge SG for LID-3300IP

- A factory installed option for LID-3300 Ice Detectors
- Protects the Ice Detector against lightning and overvoltage
- Tested in high voltage laboratory by Phoenix Contact GmbH.

NEW! Warning light system for wind park

- Wireless ice alarm transmission from the base station to the sub stations
- Protects people and assets
- Preliminary alarm and time delay options available.

Summary

- Labkotec is a pioneer and market leader in wind turbine ice detection.
- New innovations include (among others):
 - LID-3300IP Type 2 (product launch 12/2018)
 - Overvoltage protection package for LID-3300IP
 - Complete ice warning systems for wind farms
 - Modbus over TCP/IP for LID-3300IP
 - Blade ice detector (available for customer pilots since 2018)
- Performance and high quality of ice detectors is ensured by continuous and intensive testing in icing wind tunnel, met masts and wind turbines.

