

Universität für Bodenkultur Wien

Uncertainties and choices in ice risk assessments How to get the results you want

Markus Drapalik

Institute of Security/Safety- and Risk Sciences University of Natural Resources and Life Sciences, Vienna markus.drapalik@boku.ac.at www.risk.boku.ac.at

🔀 🔁 🔛 🖾 🔘 😪 🙆 🙆 🖉 🔺 🔎 😭 😒

Introduction

- Ice Risk assessments since 2010
- Large turbines as well as small turbines
- Focused on ice shed (ice throw has to be avoided in Austria)
- Ongoing monitoring of ice shed

- IEA recommendations give a solid framework
- Still many open points
- Results of assessments depend on several expert decisions

Parts of an assessment as described in the IEA recommendations

- Meteorological
 - Icing frequency
 - Icing intensity
 - Wind speed

- Ballistic Model
 - Ice fragment properties
 - Distances
 - Impact energy

- Additional measures
 - Warning signs
 - De-Icing
 - Information

Meteorological: lcing events, icing frequency

- Different icing models available
- Must be suitable (validated) for the site
- Problem of data availability time frame is often limited

Icing frequency depending on the investigation period

Universität für Bodenkultur Wien

Best results for this location: 60 years in 1 day resolution

Not usable for wind data

When does the ice drop?

Universität für Bodenkultur Wien

Е

Wind during and 1h after icing conditions

9 ≤ W_S < 10 8 ≤ W_S < 9 7 ≤ W_S < 8 6 ≤ W_s < 7 5 ≤ W_s < 6 $4 \leq W_{s} < 5$ $3 \leq W_{s} < 4$ $2 \le W_{S} < 3$ 1 ≤ W_s < 2 $0 \le W_{s} < 1$

W_S ≥ 10

Effect of the time of ice shed on the risk

Where is the ice? Icing intensity

- seldom used: ISO (2017): blade cylinder model
- IEC (2017): $M = 0.125 \cdot c_{85} \cdot R$ [kg ice per m blade]
- Seifert (2007): $t_{ice} = c(R) \cdot (0.45 \cdot e^{-0.05 \cdot R} + 0.14)$
- Seifert (2003): linear with sawtooth
- Li et al (2014): 6-16% of profile area, depending on angle of attack

Ice loads

Universität für Bodenkultur Wien

Similar total mass Different locations

Riskmap for ice shed depending on iceload

Riskmap for ice throw depending on iceload

Universität für Bodenkultur Wien

Drag-only (Morgan et al 1996 / Biswas 2012)

One-axis rotation (Baker 2007)

6 Degrees of Freedom (Noda and Nagao 2010, Richards et al 2008)

Validation is necessary

ICETHROWER study

Universität für Bodenkultur Wien

Ice throw montoring 2013-2016

observed

throw distance of ice fragments

Universität für Bodenkultur Wien

modelled **Negative skew** $\mu \approx 100$

Model is conservative, but is it correct?

ICETHROWER study

0.15

elative frequency of fragments 0.0 5

0

0

Data source: ICE THROWER database by PÖYRY

0.1

Problem of validation

Universität für Bodenkultur Wien

- Best possible validation would be comparison with observed ice throwm but:
 - Too many parameters: turbine height, rotor diameter, wind speed, ice density, icing intensity, ...
 - Many variables difficult to observe, e.g. wind speed during a single throw
- \rightarrow Current observations are not sufficient
- Solutions:
 - Much more observations

Experiments

Models vs experiment

Correction factors for distances

Ballistic Models

- No accurate, validated model available
- Conservative case depends on scope public or service personnel?
- Correction factors not applicable, vary depending on ice fragment geometry

Additional parameters

- Logarithmic wind profile
- Turbulent wind field
- Turbulences from blades
- Topographic models

Fragment parameter distributions

- In Biswas model characterised by area, mass and drag coefficient
- Different results from different campaigns
- Fragment properties probably site specific

Risk map for ice shed depending on ice fragment parameter distributions

Risk map for ice throw depending on ice fragment parameter distributions

Energy limit for dangerous fragments

Universität für Bodenkultur Wien

Fixed limit: 40J Continuous: probit function

Actual danger from a single fragment difficult to assess: impact area, compressibility, affected organs

Energy limit for dangerous fragments

Additional safety measures

- Warning signs
- Warning signs with lights
- Physical barriers
- Communication strategy
- Controlled de-icing

Risk Reduction Factors

Universität für Bodenkultur Wien

Category	Safety measures	Risk reduction (RRF)	Appropriate for
Reduction of likelihood of presence	Warning signs of ice fall conditions	1 to 10	Minor roads and paths
	Warning light connected to the ice detection system on the turbine in combination with warning signs	10 to 100	Minor roads and paths
	Physical barrier (official road closure) and signs	10 to 100	Roads and official frequently used hiking paths

IEA Wind TCP Task 19: International Recommendations for Ice Fall and Ice Throw Risk Assessments, October 2018

- No studies on effectiveness available
- \rightarrow Almost arbitrary risk reduction factors can be applied

Conclusions

- Changing ice risk results by at least an orders of magnitude is easy
- Sensitive (and often unknown) parameters:
 - ice mass distribution on the blade
 - Actual time of ice shed/throw (and thus wind conditions)
 - Ice fragment properties (distribution of area/mass ratio)
- Current Ballistic Models highly inaccurate
- Use additional risk reducing measures (warning signs etc.), but do not apply Risk Reduction Factors

