International Recommendations for Ice-Fall / Ice-Throw Risk Assessments

Andreas Krenn

Energiewerkstatt e.V.

Co-Authors: A. Stökl, N. Weber, S. Barup, S. Müller, A. Hoffmann, T. Weidl, N. Stoffels, T. Hahm, R. Bredesen, M. Lannic, F. Storck, F. Lautenschlager

energiewerkstatt°

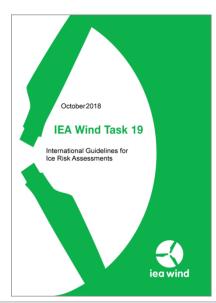
Winterwind 2019, Umea/Sweden

Motivation and Project Objective

Large deviations in:

- Stipulation of mitigation measures / regulatory requirements
- Requirements of authorities regarding assessments
- Methodologies / results of individual consultants

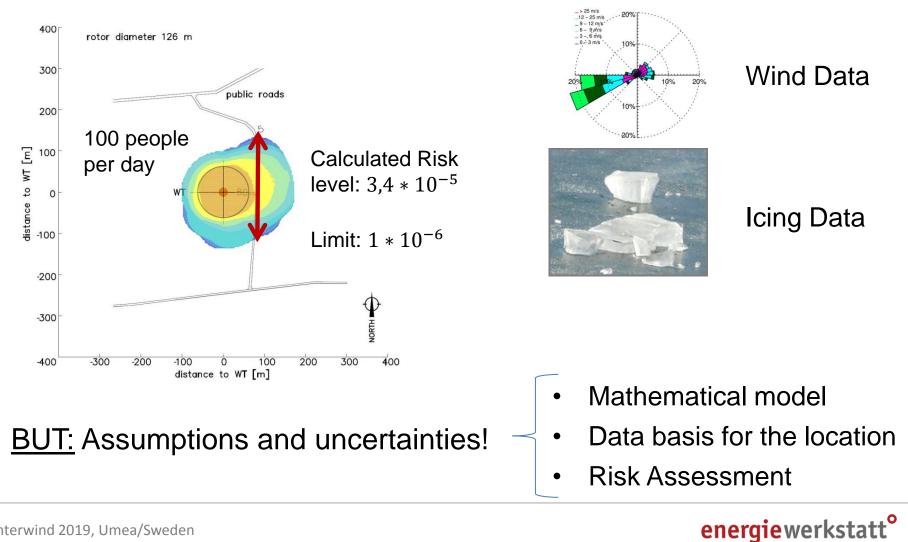
Project Objective:


- International guidelines/recommendations for the elaboration of ice-throw / ice-fall risk assessments
- Awareness of authorities and wind energy community about crucial parameters → Paving the way to more transparency
- Identification of core recommendations ('must haves')

Project Organisation

8 international Partners (with different background)

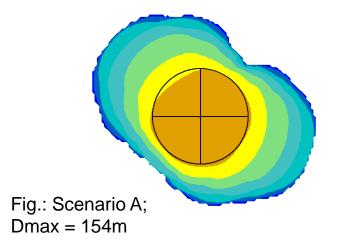
- 4x Consultants
- 2x Certification bodies
- 1x WF developer & operator
- 1x Turbine Manufacturer

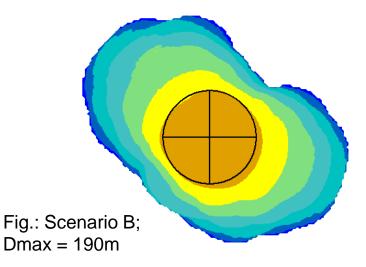

International Recommendations

- Published in October 2018
- Under the umbrella of IEA Wind Task 19

energiewerkstatt°

Winterwind 2019, Umea/Sweden


Prevalent approach of ice-fall risk assessments



Size and weight distributions

	Dimensions	Mass	Numbers
50 %	3x4x8cm	86g	250
35 %	5x8x10cm	240g	175
10 %	5x10x50cm	1,5kg	50
5 %	3x20x100cm	5,4kg	25

	Dimensions	Mass	Numbers
77 %	3x5x10cm	90g	385
14 %	3x9x10cm	243g	69
9 %	10x13x20cm	1,6kg	44
0,4 %	16x19x20cm	5,5kg	2

Mathematical Model

(i.e. statistical trajectory model)

- Turbine parameters:
 - HN, DR, operational mode (e.g. idling)
- Topography in case of complex terrain
 - DTM or via post-processing
- Physical parameters:
 - Air density, vertical wind profile, radial distribution of ice on the blade, parameters of relevant ice fragments
- Integration into a statistical model
 - Blade position, break-off points...

energiewerkstatt^o

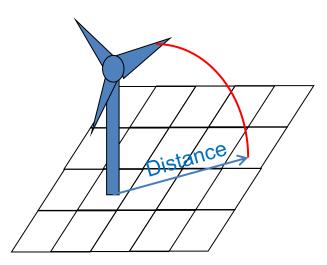
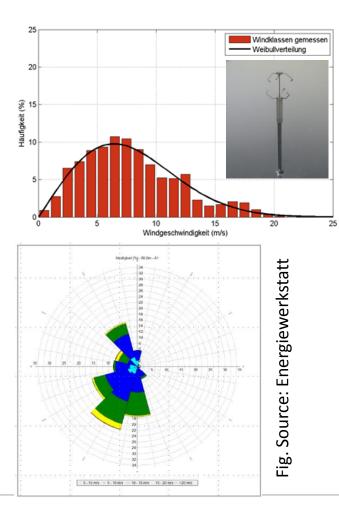



Fig.: Calculation of Trajectories

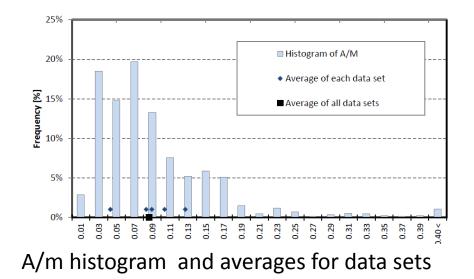
Wind Data Basis

- 10 minutes' averaging (or less)
 - Wind speed & direction
- Representative for the turbine location
 - Horizontal and vertical extrapolation
 - Long term correction
- Representative for periods when icing and melting may occur
 - Filtering shall not be done too narrow!

Winterwind 2019, Umea/Sweden

Icing Data Basis

Amount of ice fragments:


E.g. Scaling of in situ ice fall / throw observations (e.g. Gütsch, Icethrower, R.Ice...)

Shape of ice fragments:

E.g. Merged A/m distribution from five different collection campaigns

$$N_{site} = N_{obs} * sf_{ice} * sf_{rotor} * sf_{op}$$

Tabular indication regarding no. of fragments for five IEA icing classes

Risk Assessment

- Risk analysis:
 - Risk = "Probability of occurrence" times "Consequence"
 - Recommendations regarding Consequences and Exposure
- Risk evaluation:
 - Recommendations reg. risk acceptance criteria: "Which risk is acceptable?"
 - Distinction of individual and societal risk
 - Comparison of results of analysis and acceptance criteria to define whether additional measures are required

- Risk reducing measures
 - Efficiency / effectiveness of the individual measures

Considerations regarding uncertainties

- Two sorts of factors of influence
 - Effect on the landing positions (wind speed, aerodyn. parameters)
 - \rightarrow To be estimated <u>as realistic as possible</u>
 - Direct effect on the calculated risk level (no. of fragments, mitigation measures...)
 - \rightarrow To be <u>selected conservatively</u>
- Conclusion of the consortium
 - Site and project specific!
 - Biggest deviations regarding the risk: Icing data and risk assessment

Impact of operational modes

- Experiences from canton Burgenland/Austria
 Until recently: Obligatory RBH System
- Experiences from canton Styria / Austria
 - Heating during operation
- Most significant decision: Ice fall vs. ice throw

Summary

- A first step towards more transparency
- More Objective assessments possible (e.g. in Austria)
 - Distances < "BTH+20%" accepted</p>
 - RBH system no longer required for locations close to Vienna
- Remaining challenges
 - Considerations regarding operational modes
 - Efficiency of measures: Technical and juridical perspective

energiewerksta

Authorities need to be Informed

International Recommendations for Ice-Fall / Ice-Throw Risk Assessments

Thanks for your Attention.