

OVERVIEW OF PRESENTATION

- Quick overview of atmospheric stability theory
- Assessing current characterisation approaches
- Propose an alternative approach
 - Stability indicator
 - Reanalysis data

ATMOSPHERIC STABILITY

ATMOSPHERIC STABILITY

Stability level	Definition
Unstable	Turbulence is caused by solar ground heating, warming the air close to the ground and causing it to rise. Cooler air from the surrounding area is drawn in to replace the rising air. Vertical mixing is prevalent.
Neutral	Turbulence mainly caused by orography, producing swirling eddies. Mixing occurs both horizontally and vertically.
Stable	Flow is increasingly laminar and there is low turbulence. Stability suppresses eddies even when the wind is displaced by terrain.

RELEVANCE IN WIND RESOURCE ASSESSMENTS

- Stability affects
 - Shear
 - Wind flow across the site
 - Turbulence
 - By extension; wind turbine performance and wake losses
- Cold climates
 - Large seasonal and diurnal stability variations

CURRENT CHARACTERISATION APPROACH

- Using shear and turbulence from site measurements
 - Easily derived from anemometer measurements
 - Stability variations affect shear and turbulence \checkmark
 - The parameters are also affected by local terrain and ground cover X
 - Data coverage e.g. instrument icing X
 - Does not take temperature gradient into account X

Richardson number is a measure of dynamic stability

$$Ri = \frac{g}{\overline{\theta_v}} \frac{\Delta \theta_v}{\left(\Delta U/_{\Delta Z}\right)^2} \rightarrow \begin{cases} > 0 & Stable \\ = 0 & Neutral \\ < 0 & Unstable \end{cases}$$

 θ_{v} is potential virtual temperature g is acceleration due to gravity U is windspeed z is height

- Deriving Richardson number from mast data;
 - Measured onsite
 - Availability of instrumentation X
 - Calibration X
 - In cold climates; icing affecting data coverage X

Proposed method – use reanalysis data

- Comparison of stability indicators derived from mast data and MERRA2
- Using data from:
 - 10 sites in 7 countries
 - Tall masts with high quality measurements
 - Onshore and offshore
- Producing 12x24 matrices

COMPARISON WITH MAST DATA - SWEDISH SITE

Hour						Мо	nth					
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
0	0.7	0.6	0.5	1.0	1.3	1.5	1.7	1.2	1.4	0.9	1.0	0.8
1	0.7	0.8	0.7	1.0	1.3	1.5	1.6	1.2	1.3	1.1	1.1	0.7
2	0.9	0.9	0.8	0.9	1.0	1.5	1.7	1.4	1.1	1.1	1.0	0.7
3	1.0	0.7	0.8	1.0	1.0	1.3	1.7	1.4	1.2	0.9	1.0	0.7
4	0.9	0.5	0.7	1.2	0.8	0.4	1.5	1.4	1.2	1.0	1.1	1.0
5	8.0	0.7	0.5	0.9	0.5	-0.4	0.5	1.0	1.1	0.9	0.9	1.3
6	0.8	0.6	0.7	0.3	-0.5	-1.6	-0.7	0.8	1.0	1.0	1.0	1.3
7	0.7	0.6	0.4	-0.4	-1.2	-2.2	-2.3	-0.6	0.5	0.9	0.8	1.3
8	0.9	0.7	0.3	-1.2	-1.5	-2.6	-2.9	-1.8	-0.3	0.7	0.7	1.2
9	0.8	0.5	-0.3	-1.9	-1.8	-2.7	-3.3	-2.6	-0.9	0.2	0.7	1.4
10	0.7	0.5	-1.1	-2.2	-1.8	-2.5	-3.0	-2.8	-1.8	-0.3	0.5	1.5
11	0.5	0.0	-1.5	-2.3	-2.0	-2.5	-3.1	-2.7	-2.0	-0.7	0.5	1.3
12	0.5	-0.2	-1.4	-2.7	-2.0	-2.4	-2.7	-2.6	-1.9	-1.0	0.5	0.7
13	0.5	-0.2	-1.2	-2.4	-1.8	-2.1	-2.8	-2.4	-1.6	-1.0	0.6	0.7
14	0.6	0.0	-0.9	-1.9	-1.6	-2.0	-2.6	-2.1	-1.4	-0.6	0.5	1.0
15	0.6	0.5	-0.3	-2.0	-1.7	-2.1	-2.4	-1.8	-0.8	0.2	0.7	1.0
16	0.8	0.7	0.1	-1.6	-1.5	-1.5	-1.8	-1.3	-0.2	1.0	0.8	1.1
17	0.5	0.9	0.4	-0.5	-1.0	-1.3	-1.1	-0.1	0.8	1.1	0.9	1.0
18	0.8	0.7	0.4	0.5	-0.3	-0.6	-0.3	0.6	1.3	1.0	0.9	1.0
19	0.8	0.7	0.6	1.1	0.6	0.1	0.6	1.1	1.2	1.0	0.8	1.2
20	1.0	0.7	0.6	1.1	1.2	0.9	1.4	1.3	1.1	1.0	0.7	1.1
21	0.8	0.7	0.8	0.9	1.5	1.3	1.7	1.3	1.2	1.0	0.7	0.9
22	0.7	0.7	0.6	1.1	1.4	1.4	1.7	1.3	1.3	1.0	0.7	0.7
23	0.8	0.5	0.5	1.1	1.4	1.6	1.8	1.3	1.3	1.1	0.6	0.7

Hour						Мо	nth					
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
0	0.5	0.4	0.4	0.9	0.7	0.9	0.8	0.6	0.6	0.3	0.4	0.4
1	0.5	0.3	0.5	0.6	0.7	0.7	0.9	0.7	0.6	0.2	0.3	0.4
2	0.4	0.4	0.4	0.5	0.8	0.7	1.2	0.7	0.6	0.2	0.3	0.4
3	0.5	0.4	0.7	0.6	0.7	0.4	0.7	0.8	0.4	0.3	0.4	0.4
4	0.4	0.6	0.5	0.6	0.2	-0.1	0.0	0.5	0.5	0.3	0.4	0.4
5	0.4	0.9	0.3	0.3	-0.2	-0.5	-0.4	-0.1	0.4	0.2	0.4	0.5
6	0.4	0.4	0.3	0.0	-0.4	-0.5	-0.5	-0.6	0.1	0.2	0.5	0.6
7	0.5	0.5	0.3	-0.2	-0.4	-0.5	-0.6	-0.7	-0.3	0.1	0.6	0.5
8	0.5	0.3	0.1	-0.4	-0.5	-0.6	-0.6	-0.7	-0.4	0.0	0.6	0.3
9	0.5	0.1	-0.1	-0.2	-0.4	-0.7	-0.7	-0.8	-0.4	-0.1	0.4	0.3
10	0.3	0.0	-0.1	-0.2	-0.4	-0.8	-0.7	-0.7	-0.4	-0.2	0.2	0.4
11	0.2	0.0	-0.1	-0.2	-0.4	-0.7	-0.8	-0.6	-0.4	-0.2	0.1	0.4
12	0.3	0.0	-0.1	-0.2	-0.4	-0.7	-0.6	-0.5	-0.3	-0.2	0.0	0.3
13	0.5	0.0	-0.1	-0.2	-0.4	-0.6	-0.5	-0.4	-0.3	-0.1	0.1	0.3
14	0.5	0.1	0.0	-0.1	-0.4	-0.5	-0.3	-0.3	-0.2	0.0	0.3	0.4
15	0.5	0.2	0.0	0.0	-0.3	-0.4	-0.3	-0.2	-0.1	0.2	0.4	0.4
16	0.6	0.2	0.2	0.0	-0.1	-0.2	-0.3	-0.2	0.1	0.4	0.4	0.3
17	0.4	0.2	0.4	0.2	0.0	-0.2	-0.3	-0.1	0.7	0.4	0.5	0.4
18	0.5	0.3	0.5	0.4	0.3	0.0	0.0	0.4	0.8	0.5	0.6	0.5
19	0.5	0.3	0.6	0.8	0.6	0.2	0.3	0.6	0.7	0.6	0.5	0.5
20	0.5	0.3	0.5	0.9	0.7	0.6	0.8	0.7	0.6	0.6	0.4	0.6
21	0.6	0.3	0.8	1.0	0.6	0.9	0.7	0.6	0.5	0.4	0.4	0.4
22	0.6	0.3	0.5	0.9	0.7	1.1	0.6	0.6	0.4	0.4	0.4	0.4
23	0.5	0.3	0.4	0.9	0.7	1.2	0.7	0.6	0.5	0.3	0.5	0.4

Mast Richardson number

Hour						Мо	nth					
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
0	0.33	0.37	0.35	0.33	0.34	0.31	0.32	0.34	0.32	0.34	0.33	0.34
1	0.35	0.35	0.34	0.34	0.33	0.31	0.34	0.34	0.34	0.33	0.32	0.33
2	0.35	0.35	0.32	0.34	0.34	0.31	0.34	0.34	0.35	0.32	0.33	0.33
3	0.37	0.34	0.31	0.35	0.35	0.30	0.33	0.33	0.34	0.34	0.32	0.34
4	0.36	0.34	0.33	0.34	0.34	0.32	0.32	0.32	0.33	0.34	0.33	0.34
5	0.37	0.33	0.34	0.34	0.30	0.24	0.27	0.32	0.31	0.34	0.33	0.35
6	0.36	0.36	0.33	0.31	0.25	0.18	0.18	0.28	0.32	0.35	0.33	0.35
7	0.37	0.37	0.33	0.23	0.19	0.15	0.14	0.20	0.30	0.36	0.32	0.34
8	0.38	0.36	0.28	0.16	0.17	0.14	0.11	0.14	0.25	0.33	0.32	0.33
9	0.40	0.36	0.21	0.14	0.17	0.13	0.11	0.11	0.19	0.30	0.32	0.34
10	0.39	0.31	0.17	0.14	0.16	0.14	0.12	0.11	0.15	0.25	0.31	0.34
11	0.40	0.29	0.14	0.14	0.16	0.14	0.12	0.11	0.14	0.22	0.30	0.34
12	0.39	0.26	0.14	0.14	0.16	0.14	0.13	0.13	0.15	0.20	0.31	0.33
13	0.40	0.25	0.14	0.15	0.16	0.13	0.13	0.13	0.15	0.19	0.29	0.34
14	0.39	0.25	0.15	0.16	0.16	0.14	0.13	0.13	0.16	0.22	0.30	0.36
15	0.39	0.26	0.17	0.16	0.16	0.15	0.14	0.15	0.16	0.25	0.31	0.35
16	0.39	0.30	0.19	0.17	0.16	0.15	0.15	0.16	0.20	0.29	0.31	0.35
17	0.38	0.31	0.23	0.20	0.18	0.17	0.16	0.20	0.25	0.31	0.31	0.37
18	0.36	0.35	0.27	0.24	0.21	0.19	0.20	0.24	0.27	0.31	0.31	0.37
19	0.36	0.35	0.29	0.27	0.25	0.22	0.24	0.28	0.29	0.32	0.32	0.34
20	0.33	0.34	0.29	0.29	0.28	0.26	0.27	0.28	0.31	0.33	0.33	0.33
21	0.34	0.32	0.30	0.30	0.29	0.28	0.29	0.29	0.33	0.33	0.33	0.34
22	0.34	0.34	0.33	0.29	0.31	0.29	0.29	0.32	0.34	0.33	0.33	0.32
23	0.35	0.37	0.34	0.31	0.32	0.30	0.31	0.33	0.32	0.33	0.34	0.34

MERRA-2 Richardson number

our							nth					
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
0	7.3	8.1	8.1	7.9	7.0	7.1	6.9	7.4	7.6	8.1	8.3	8.0
1	7.4	7.7	8.1	7.9	6.9	7.3	6.8	7.4	7.4	8.2	8.4	8.1
2	7.7	8.0	8.3	8.0	7.1	7.4	7.1	7.2	7. <mark>8</mark>	8.1	8.3	8.0
3	7.4	7.5	8.5	7.9	7.2	8.1	7.3	7.4	7. <mark>9</mark>	7.7	8.3	8.1
4	7.6	8.0	8.3	8.0	7.9	9.6	8.0	7.4	8.0	7.9	8.4	7.9
5	8.0	7.8	8.1	9.1	9.8	11.6	10.0	8.3	- 8. 0	8.0	8.7	7.6
6	8.3	7.5	8.3	10.3	11.8	12.6	12.1	10.1	8.6	8.0	8.6	7.9
7	7.8	7.6	8.9	11.9	13.0	13.3	13.0	12.1	10.2	8.3	8.9	7.8
8	7.6	7.6	10.8	13.0	13.9	14.1	13.8	13.0	11.9	9.3	8.6	7.9
9	7.2	8.9	11.9	13.5	14.5	14.9	14.9	14.4	12.9	10.8	8.9	8.0
10	7.6	10.0	12.8	13.9	15.3	15.4	15.1	14.6	13.8	11.8	9.8	8.4
11	7.5	10.4	13.3	14.3	15.9	16.0	15.7	15.4	14.2	12.3	10.3	8.6
12	7.6	11.2	13.2	14.2	15.8	15.9	15.7	15.3	14.0	12.4	10.4	8.9
13	7.4	11.5	13.1	14.1	15.6	15.6	15.3	15.0	14.0	12.5	9.9	8.5
14	7.4	10.9	13.2	14.2	15.7	15.9	15.5	14.7	13.7	11.7	9.1	8.3
15	7.2	10.2	13.0	13.7	14.9	15.3	15.2	14.1	13.2	10.7	8.9	8.1
16	6.8	9.4	12.2	12.8	14.5	14.4	14.9	12.9	12.0	8.8	8.8	8.3
17	7.0	8.6	10.4	12.3	13.5	13.8	13.3	12.0	9.7	8.3	8.9	8.1
18	6.9	8.4	8.7	10.7	12.2	12.7	12.2	10.3	8.1	8.4	9.0	8.5
19	7.0	8.7	8.3	9.0	10.2	11.4	10.4	8.5	8.0	8.2	8.9	8.3
20	7.1	8.4	8.6	8.2	8.1	9.7	8.4	6.9	7.9	8.4	9.2	8.2
21	7.3	8.3	8.4	8.0	7.2	8.2	7.2	6.8	8.0	8.0	8.9	8.0
22	7.4	8.2	8.2	8.0	6.7	7.5	6.8	7.0	7.7	7.7	8.9	8.1
23	7.1	8.5	8.2	8.0	6.8	7.2	6.7	7.0	7.8	7.9	8.8	8.4
22	7.4	8.2	8.2	8.0	6.7	7.5	6.8	7.0	7.7	7.7	8.9	

Mast shear exponent

Mast turbulence intensity

COMPARISON WITH MAST DATA - EGYPTIAN SITE

Hour						Мо	nth					
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
0	2.1	1.8	1.1	1.3	0.9	0.5	0.3	0.3	0.3	0.7	1.5	1.7
1	2.1	1.7	1.0	1.3	0.9	0.5	0.3	0.3	0.3	0.7	1.5	1.7
2	2.0	1.8	1.0	1.4	0.8	0.4	0.3	0.3	0.3	0.6	1.5	1.8
3	2.0	1.8	1.0	1.3	0.8	0.5	0.4	0.5	0.4	0.7	1.6	1.8
4	2.1	1.8	1.0	1.4	1.0	0.6	0.5	0.6	0.5	0.8	1.5	1.7
5	2.2	1.8	1.1	1.4	1.0	0.6	0.6	0.7	0.5	0.8	1.6	1.7
6	2.2	1.9	1.1	1.0	0.1	-0.4	-0.2	0.2	0.3	0.6	1.6	1.8
7	2.0	1.4	-0.2	-1.6	-3.3	-3.6	-3.4	-2.7	-1.8	-0.4	1.0	1.5
8	0.4	-1.1	-3.8	-4.2	-4.5	-4.6	-4.7	-4.6	-3.9	-3.4	-1.5	0.1
9	-3.2	-3.9	-4.6	-4.6	-4.6	-4.7	-4.8	-4.8	-4.3	-4.3	-4.1	-3.1
10	-4.1	-4.3	-4.6	-4.7	-4.8	-4.7	-4.7	-4.8	-4.3	-4.5	-4.5	-4.2
11	-4.2	-4.4	-4.6	-4.7	-4.8	-4.6	-4.7	-4.7	-4.3	-4.4	-4.5	-4.4
12	-4.2	-4.4	-4.7	-4.7	-4.7	-4.7	-4.6	-4.7	-4.2	-4.5	-4.4	-4.3
13	-4.0	-4.5	-4.7	-4.4	-4.7	-4.6	-4.7	-4.7	-4.4	-4.5	-4.4	-4.4
14	-4.1	-4.3	-4.6	-4.5	-4.8	-4.7	-4.7	-4.8	-4.5	-4.3	-4.5	-4.1
15	-3.8	-4.3	-4.6	-4.5	-4.8	-4.7	-4.7	-4.7	-4.6	-4.3	-4.0	-3.5
16	-2.3	-3.8	-4.4	-4.3	-4.7	-4.7	-4.7	-4.6	-4.3	-3.6	-1.9	-1.0
17	0.8	-0.8	-2.6	-3.2	-3.9	-4.1	-4.3	-4.0	-2.5	-0.5	0.8	1.2
18	1.4	1.1	0.7	0.3	-0.5	-1.4	-1.8	-0.6	0.3	0.6	1.2	1.5
19	2.0	1.3	1.0	1.1	0.9	0.4	0.5	0.5	0.6	0.8	1.6	1.8
20	2.1	1.7	1.2	1.3	1.0	0.5	0.7	0.7	0.8	1.1	1.6	1.8
21	2.1	1.8	1.2	1.4	1.0	0.5	0.6	0.8	0.7	1.0	1.6	1.8
22	2.1	1.7	1.2	1.4	1.0	0.5	0.6	0.5	0.5	1.0	1.6	1.7
23	2.2	1.8	1.2	1.3	1.0	0.4	0.4	0.3	0.3	0.8	1.6	1.7

Hour						Mo	nth					
Hour	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
0	0.3	0.4	0.3	0.4	0.3	0.2	0.1	0.2	0.1	0.2	0.3	0.3
1	0.3	0.4	0.3	0.3	0.3	0.1	0.1	0.2	0.1	0.2	0.3	0.3
2	0.3	0.4	0.3	0.3	0.3	0.1	0.1	0.2	0.1	0.2	0.3	0.3
3	0.3	0.3	0.3	0.3	0.3	0.1	0.1	0.1	0.1	0.3	0.3	0.3
4	0.3	0.3	0.3	0.3	0.3	0.1	0.1	0.1	0.1	0.3	0.3	0.2
5	0.3	0.3	0.3	0.3	0.2	0.1	0.1	0.1	0.1	0.3	0.3	0.2
6	0.3	0.3	0.2	0.1	-0.1	-0.1	-0.1	-0.1	0.0	0.2	0.3	0.3
7	0.1	0.0	-0.3	-0.4	-0.5	-0.3	-0.4	-0.3	-0.3	-0.3	0.0	0.1
8	-0.4	-0.6	-0.6	-0.6	-0.6	-0.5	-0.5	-0.4	-0.4	-0.8	-0.6	-0.3
9	-0.7	-0.8	-0.7	-0.8	-0.6	-0.5	-0.7	-0.5	-0.6	-1.2	-1.0	-0.7
10	-0.8	-0.9	-0.8	-0.8	-0.7	-0.6	-0.8	-0.6	-0.7	-1.3	-1.2	-0.8
11	-0.9	-0.9	-0.8	-0.9	-0.7	-0.5	-0.7	-0.6	-0.8	-1.3	-1.3	-0.9
12	-0.9	-0.8	-0.8	-0.9	-0.7	-0.5	-0.7	-0.5	-0.8	-1.3	-1.3	-1.0
13	-0.8	-0.7	-0.7	-0.8	-0.6	-0.4	-0.6	-0.5	-0.7	-1.2	-1.1	-0.9
14	-0.7	-0.6	-0.6	-0.6	-0.4	-0.4	-0.5	-0.4	-0.6	-1.0	-0.8	-0.7
15	-0.5	-0.4	-0.4	-0.4	-0.3	-0.3	-0.4	-0.3	-0.4	-0.6	-0.5	-0.4
16	-0.1	-0.1	-0.1	-0.2	-0.1	-0.1	-0.2	-0.2	-0.2	-0.2	0.0	0.0
17	0.2	0.2	0.2	0.1	0.0	0.0	-0.1	0.0	0.0	0.2	0.3	0.3
18	0.2	0.3	0.3	0.4	0.2	0.1	0.1	0.1	0.1	0.2	0.3	0.2
19	0.2	0.3	0.3	0.4	0.3	0.1	0.1	0.1	0.1	0.2	0.3	0.2
20	0.2	0.3	0.3	0.4	0.3	0.1	0.2	0.1	0.1	0.2	0.3	0.2
21	0.3	0.3	0.3	0.4	0.3	0.1	0.2	0.1	0.1	0.2	0.3	0.3
22	0.3	0.3	0.3	0.4	0.3	0.2	0.2	0.1	0.1	0.2	0.3	0.3
23	0.3	0.3	0.3	0.3	0.3	0.2	0.2	0.1	0.1	0.2	0.3	0.3

Mast	Richard	lson	num	her
iviasi	Nichard	15011	Hulli	DEL

Hour						Mo	nth					
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
0	0.11	0.13	0.16	0.15	0.17	0.16	0.17	0.18	0.18	0.18	0.14	0.13
1	0.12	0.16	0.15	0.15	0.16	0.16	0.16	0.17	0.17	0.17	0.14	0.13
2	0.13	0.14	0.15	0.14	0.16	0.16	0.16	0.18	0.17	0.16	0.15	0.13
3	0.13	0.14	0.17	0.16	0.16	0.16	0.16	0.15	0.16	0.17	0.15	0.12
4	0.12	0.12	0.15	0.16	0.16	0.16	0.15	0.15	0.16	0.16	0.16	0.13
5	0.11	0.15	0.15	0.16	0.15	0.16	0.15	0.16	0.17	0.16	0.16	0.14
6	0.10	0.15	0.16	0.15	0.11	0.11	0.12	0.14	0.16	0.16	0.15	0.13
7	0.11	0.16	0.12	0.08	0.04	0.04	0.05	0.06	0.08	0.13	0.16	0.14
8	0.12	0.11	0.04	0.04	0.03	0.03	0.03	0.03	0.04	0.05	0.08	0.12
9	0.06	0.04	0.03	0.04	0.04	0.03	0.03	0.04	0.04	0.05	0.04	0.05
10	0.05	0.03	0.04	0.04	0.03	0.04	0.04	0.04	0.05	0.05	0.04	0.04
11	0.04	0.04	0.04	0.04	0.03	0.04	0.04	0.04	0.05	0.05	0.04	0.04
12	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.05	0.05	0.04	0.04
13	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.05	0.04	0.04
14	0.04	0.04	0.04	0.04	0.03	0.04	0.04	0.04	0.04	0.05	0.04	0.04
15	0.04	0.04	0.03	0.04	0.03	0.04	0.04	0.03	0.03	0.04	0.04	0.04
16	0.05	0.04	0.03	0.04	0.03	0.03	0.03	0.03	0.04	0.04	0.06	0.07
17	0.12	0.07	0.05	0.04	0.04	0.03	0.03	0.03	0.05	0.10	0.17	0.16
18	0.19	0.15	0.14	0.12	0.09	0.07	0.06	0.09	0.15	0.20	0.19	0.17
19	0.14	0.16	0.18	0.18	0.16	0.16	0.17	0.19	0.19	0.19	0.16	0.14
20	0.12	0.12	0.16	0.17	0.16	0.18	0.18	0.18	0.18	0.17	0.15	0.13
21	0.12	0.11	0.15	0.16	0.15	0.17	0.16	0.18	0.18	0.17	0.14	0.12
22	0.12	0.13	0.15	0.16	0.16	0.17	0.16	0.18	0.19	0.17	0.14	0.13
23	0.12	0.13	0.16	0.16	0.16	0.17	0.16	0.18	0.19	0.18	0.14	0.13

MERRA-2 Richardson number

Hour Month												
Hour												
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
0	8.0	7.0	6.0	8.0	7.0	6.0	6.0	6.0	6.0	6.0	6.0	8.0
1	8.0	8.0	6.0	7.0	7.0	6.0	6.0	6.0	6.0	5.0	6.0	8.0
2	7.0	9.0	6.0	8.0	7.0	6.0	6.0	6.0	6.0	6.0	6.0	7.0
3	7.0	8.0	6.0	6.0	7.0	6.0	6.0	6.0	5.0	6.0	6.0	7.0
4	7.0	8.0	6.0	7.0	8.0	5.0	6.0	5.0	5.0	6.0	6.0	6.0
5	7.0	9.0	6.0	6.0	8.0	6.0	6.0	5.0	5.0	6.0	7.0	7.0
6	6.0	8.0	6.0	8.0	8.0	8.0	7.0	6.0	6.0	5.0	7.0	8.0
7	7.0	8.0	8.0	9.0	8.0	7.0	7.0	7.0	7.0	7.0	7.0	10.0
8	8.0	10.0	9.0	10.0	10.0	8.0	8.0	8.0	7.0	8.0	9.0	10.0
9	10.0	12.0	11.0	13.0	12.0	10.0	10.0	10.0	9.0	9.0	10.0	11.0
10	12.0	14.0	13.0	15.0	13.0	11.0	12.0	11.0	11.0	11.0	12.0	12.0
11	15.0	16.0	14.0	15.0	14.0	11.0	12.0	12.0	12.0	13.0	14.0	14.0
12	17.0	16.0	14.0	16.0	13.0	11.0	12.0	12.0	12.0	13.0	14.0	15.0
13	17.0	14.0	13.0	16.0	12.0	11.0	12.0	11.0	11.0	12.0	13.0	14.0
14	15.0	13.0	12.0	15.0	11.0	11.0	11.0	10.0	10.0	10.0	11.0	12.0
15	12.0	11.0	11.0	13.0	10.0	10.0	10.0	9.0	9.0	9.0	10.0	10.0
16	9.0	10.0	10.0	10.0	9.0	8.0	9.0	8.0	7.0	7.0	8.0	8.0
17	8.0	9.0	8.0	9.0	9.0	7.0	7.0	7.0	7.0	7.0	7.0	9.0
18	8.0	8.0	8.0	8.0	9.0	8.0	7.0	7.0	7.0	6.0	7.0	8.0
19	7.0	8.0	7.0	10.0	8.0	7.0	7.0	7.0	6.0	6.0	6.0	7.0
20	6.0	7.0	7.0	9.0	7.0	7.0	7.0	7.0	6.0	6.0	6.0	8.0
21	7.0	8.0	6.0	8.0	7.0	7.0	7.0	6.0	6.0	5.0	6.0	8.0
22	7.0	7.0	7.0	7.0	7.0	6.0	7.0	7.0	6.0	6.0	6.0	7.0
23	7.0	7.0	6.0	7.0	7.0	7.0	7.0	6.0	6.0	6.0	5.0	8.0

Mast shear exponent

Mast turbulence intensity

CONCLUSIONS

- Benefits of Richardson number from reanalysis data
 - Comprehensive characterisation of stability
 - Consistent
 - No data coverage issues
 - Applicable offshore and onshore
 - Care required for coastal sites X

REDUCING UNCERTAINTIES

- Cross-correlations
- Shear extrapolation
- Wind flow modelling
- Performance losses
- Wake modelling
- Classify and compare sites

THANK YOU

- Hanna Vollan, <u>Hanna.Vollan@prevailinganalysis.com</u>
- K2 Management office locations:

