

VERBUND Hydro Power GmbH

ICE-CONTROL

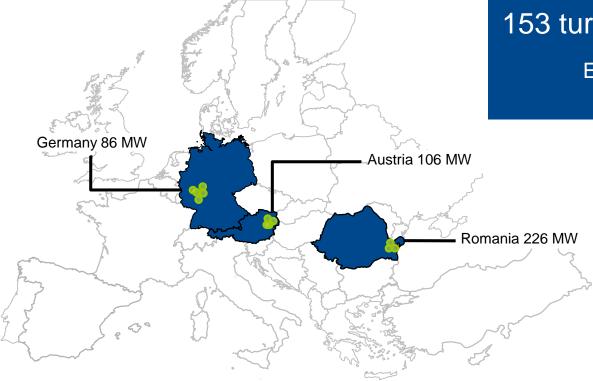
Innovative icing measurements and icing forecasts to optimize the operation of wind farms during icing conditions

Åre, 7th of February 2018

Thomas Burchhart

VERBUND - Highlights

- Integrated utility with generation, transmission, trading and sales of electricity
- 127 hydro power plants in Austria and Germany (Bavaria) approx. 8,2 GW
- 31 TWh total production (2015)
- 104 TWh trading volume in 2016, active in 10 European countries
- 3,500 km of line length of the Austrian transmission grid



VERBUND Wind Energy Portfolio

153 turbines / 421 MW / 1 TWh Enercon E-66, E-82, E-101, E-126 Senvion 3.2M114

ICE – CONTROL

Ensemble icing forecasts as basis for innovative operation of wind turbines under icing conditions

Project scope: Measurement, Forecast and Verification of Icing on Wind Turbines

Zentralanstalt für Meteorologie und Geodynamik Verbund

VERBUND Hydro Power GmbH

University of Vienna

Meteotest

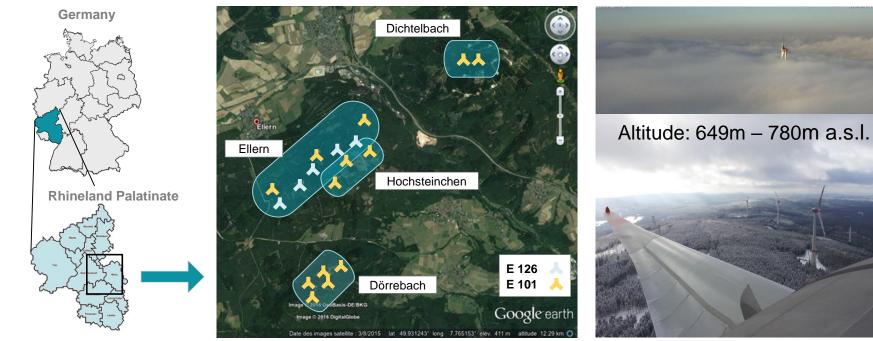
- Project duration: 04/2016 03/2019
- Project volume: 925.536 Euro (711.531 Euro founded by the Austrian Research Promotion Agency)

Project Goals

Operation

Reduction of downtimes, production losses and costs for balancing energy

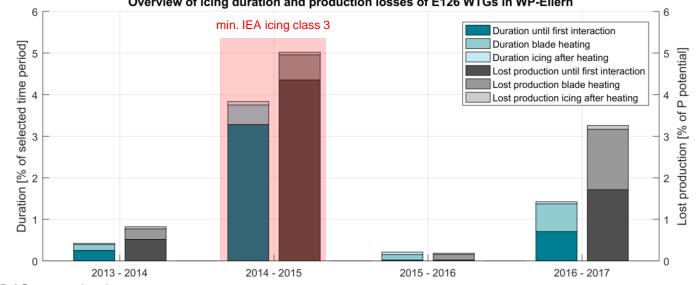
- Adaption of the existing operational strategy (restart of the WTG, blade heating, icing forecasts...)
 - Detection of ice (and no ice) during all operating conditions of the WTG including standstill times
 - · Performance analysis of the blade heating system
 - · Optimization of the blade heating system (start time, duration, end time and scheduling)


Forecasting

Consideration of icing forecasts to optimize the operation of our wind park

- Development of icing forecasts and verification with icing measurements direct on the rotor blades
- Quantification of uncertainties through ensemble forecasts
- Benchmark of our internal forecasts with state of the art icing forecasts from other market players
- Cost/Loss analysis to quantify the added value of the probability forecasts

Project Site


Overview wind farm Ellern

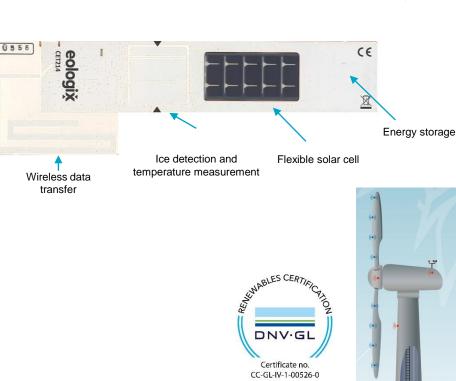
Overview Icing Losses at Wind Farm Ellern

- No correct wind farm classification according to IEA Task 19 possible •
 - Significant decrease of downtimes and production losses due to excessive de-icing strategy •

Overview of icing duration and production losses of E126 WTGs in WP-Ellern

Installed Measurement Equipment

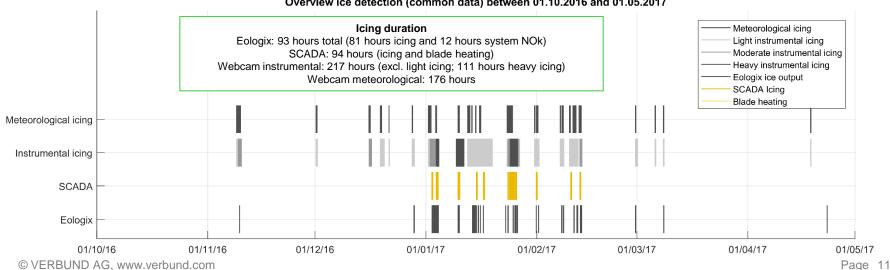
Winter 2016/2017 and 2017/2018


- Rotronic Sensor (T, RH)
- Thies Laser Distrometer (Rain)
- Fog-Monitor FM-120 (Droplet size)
- PWD 12 (Visibility)
- Makkonen cylinder (Icing)
- Eologix sensors (Icing)
 - Nacelle/rotor blades
- Sommer ice detector (Icing)
 - Rod und cube
- Additional ice detection system (installation in 2018)
- 4 Webcams
- 2 IR lights
- LiDAR Windcube V2 (Winter 2018/2019)

Innovative Ice Detection directly on the Rotor Blade

Eologix Sensor technique

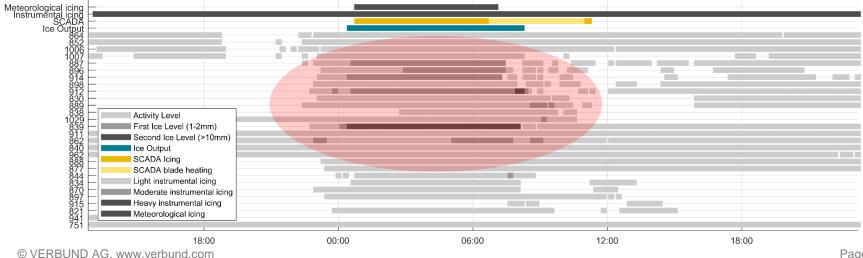
- Following measurement data is available:
 - SensorID: Serial number of the sensor
 - Temperature: Surface temperature of the sensor
 - IceSignal: Ice condition of the sensor
 - Level 1: Free surface
 - Level 2: "Activity" (wet Sensor, etc.)
 - Level 3: First icing level, >= 1-2 mm ice
 - Level 4: Second icing level, >= 10 mm ice
 - IceOutput ice condition of the complete WTG
 - Level 0: Ice free
 - Level 1: Ice detected



Overview Ice Detection Winter 2016/2017

Comparison icing duration and number of icing events (common database)

- Overall icing duration comparable but different number of events between SCADA and eologix (15 events vs. 36 events) •
- Instrumental icing at the nacelle with significant higher icing duration •
- Relative good correlation between the different systems for heavy icing events •



Overview ice detection (common data) between 01.10.2016 and 01.05.2017

Case Study 1: Perfect Match

Heavy wet snow icing event on 10th of January 2017

- Good correlation of ice detection between eologix and SCADA (start and duration)
- Rotor blade icing especially in the middle of the rotor blades

Details icing event (raw data) between 10.01.2017 00:50 and 10.01.2017 11:10

Case Study 1: Perfect Match

Heavy wet snow icing event on 10th of January 2017

- Good correlation of ice detection between eologix and SCADA (start and duration)
- Rotor blade icing especially in the middle of the rotor blades
- Ice signal of eologix sensors related to a combination of ice type and ice thickness

00:00

06:00

12:00

18:00

Case Study 2: No Match

In-cloud icing event on 10th of February 2017

- No overlap of ice detection between eologix and SCADA
- No ice detection with eologix sensors over the complete blade length

Details icing event (raw data) between 10.02.2017 12:00 and 10.02.2017 17:20

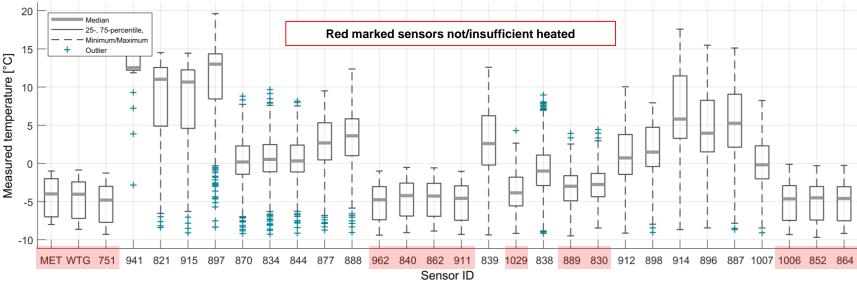
Case Study 2: No Match

In-cloud icing event on 10th of February 2017

• No overlap of ice detection between eologix and SCADA

06:00

- No ice detection with eologix sensors over the complete blade length
- Ice signal of eologix sensors related to a combination of ice type and ice thickness



Additional Sensor Data as Basis for Deeper Investigations

Direct measurement of the rotor blade surface temperatures

- No uniform heating of the complete rotor blades but sufficient heating of the complete leading edge except the blade tip
- System not capable for de-icing the complete rotor blade

Measured temperatures (raw data) during blade heating between 01.10.2016 and 01.05.2017

Available Icing Forecasts Winter 2016/2017

Verification of five independent icing forecasts

- Benchmark of internal forecasts from ZAMG and UNI-Vienna against established market players
- Basis GFS Run at 00:00 with an prognosis horizon of 48 hours
- Following parameters are available for verification:
 - Temperature [° C]
 - Rel. Humidity [%]
 - Spec. Humidity [kg/kg]
 - Pressure [hPa]
 - Wind speed [m/s]
 - Wind dir. [°]
 - Cloud water content [kg/m³]

- Rain water content [kg/m³]
- Cloud ice content [kg/m³]
- · Ice load [kg/m] on Makkonen cylinder
- · Ice rate [kg/m/h] on Makkonen cylinder
- Ice load [kg/m] on rotor blade
- Ice rate [kg/m/h] on rotor blade

Wind speed forecast of complete temperature range (prognosis horizon 24-47 hours)									
Ranking	Forecast provider	Start date	End date	ME	MÁE	MSE	RMSE	SS_MAE	RV_MSE
1	A	01.11.2016	01.04.2017	-0,03	1,85	5,68	2,38	0,15	0,27
2	В	01.11.2016	01.04.2017	0,83	2,15	7,77	2,79	0,01	0,00
3	С	01.11.2016	01.04.2017	-1,07	2,18	7,78	2,79	1,00	1,00
4	D	01.11.2016	01.04.2017	2,01	3,03	15,62	3,95	-0,39	-1,01
5	E	01.11.2016	01.04.2017	-2,87	3,16	14,71	3,84	-0,45	-0,89

Summary and Outlook

Operation

- Added value due to direct measurement of ice thicknesses and temperatures on the rotor blades
- · Calculation of a reference time series for icing on the nacelle and on the rotor blades challenging
- No experiences with the durability of the eologix sensors on the rotor blades
- Installation of an additional rotor blade ice detection system as basis for further investment decisions

Forecasting

- · Benchmark of meteorological forecasts with promising results, evaluation of icing forecasts ongoing
- Internal forecasts on the same level compared to other market players
- Development of an Cost/Loss model ongoing

