

Standardizing ice detector tests in icing wind tunnel final results

Timo Karlsson, Ville Lehtomäki, Tuomas Jokela, Mikko Tiihonen, VTT Technical Research Centre of Finland

Winter Wind 2018, Åre 5.2-7.2.2018

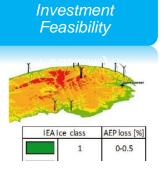
Statkraft *III* Labkotec

VATTENFALL

Content

- VTT Wind Power
- Motivation
- Approach
- Standard conditions
- KPIs
- Results
- Conclusions
- Lessons learned

Я.

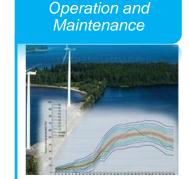

VTT Wind power

VTT Services for wind power value

30 % consultancy 70 % jointly funded



- · Value of wind power generation
- Electricity market impacts
- Capacity adequacy
- Grid electricity planning
- IEA and EERA activities


- Wind Power Icina Atlas (WIceAtlas)
- Grid Code Compliance
- Noise Assessment Methodology
- · Radar. TV and
- communications
- interference

- Technology and Innovations Cold climate markets 2015-2020 Low temperature
- Technologies for Cold Climates
- Ice detection systems
- · IEC standards, IEA & EERA activities
- Drivetrain solutions
- Technology and
- Markets Foresight

- Sea ice loads
- · Off- and onshore
- foundation measurements and design

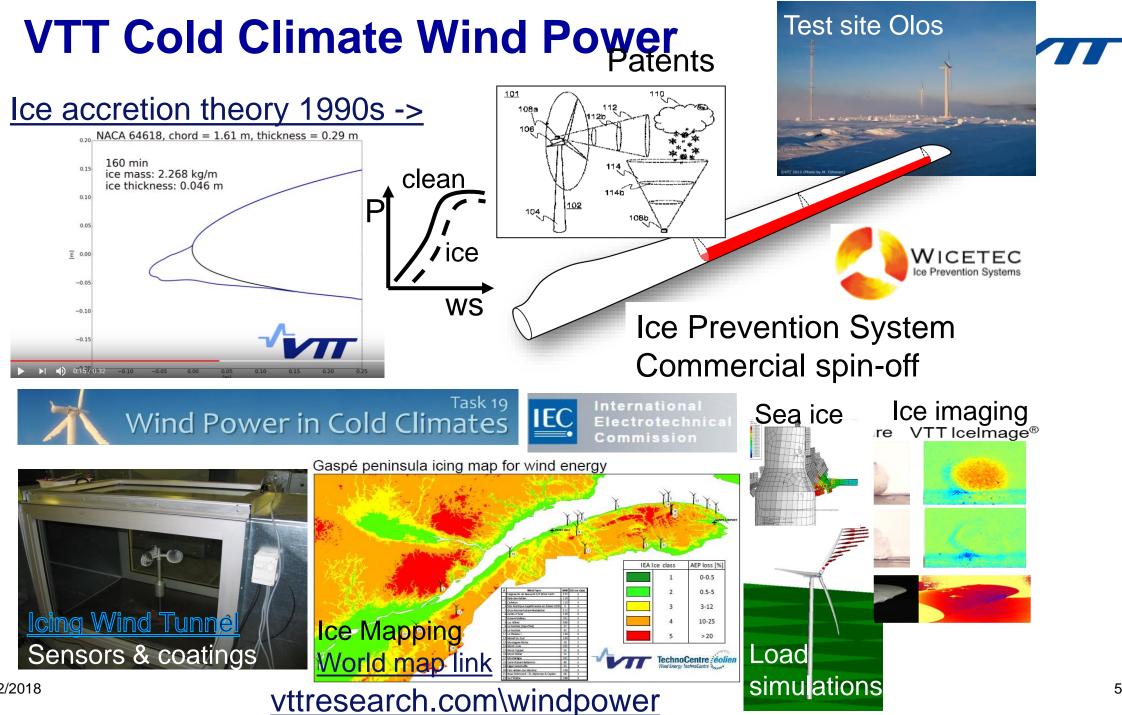
~40 person years/year

- Production forecasting methods
- Smart decisionmaking for wind turbine O&M

International customers throughout the value chain

Related networks

08/02/2018



www.vttresearch.com/windpower

 \cdots

.杰.

Motivation

Problem Today	Solution Tomorrow
1) What to buy?	5 winters in 1 week: faster R&D cycles
2) Performance?	<u>v1.0 -> v2.0</u>
	Controlled laboratory testing
1) Is sensor v1.0 ok?	Same KPIs for all
2) How improve $y(1,02)$	 sensors Benchmark sensors
	in same conditions
	 What to buy? Performance?

8

Market Need

Cold climate markets 2015-2020

Cumulative insta end of 20	alled capacity by 015 [MW]	Forecasted cap 2020	oacity by end of [MW]
Low temperature	Icing*	Low temperature	Icing*
40 500	86 500	62 500	123 000
Total 1	27 000	Total 1	85 500

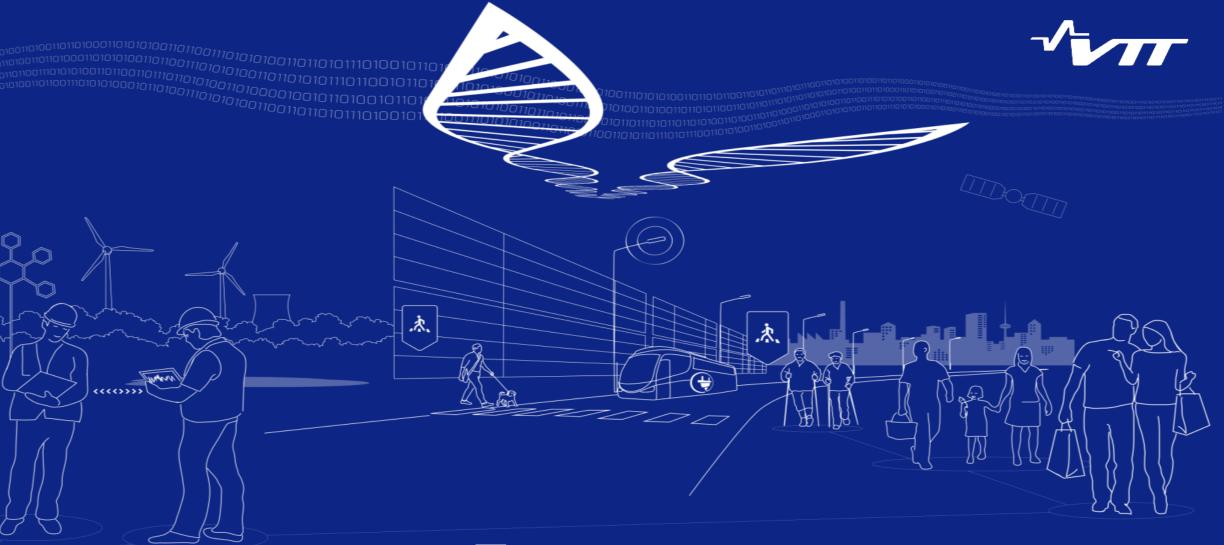
*: IEA Ice Classification ≥ 2 meaning > 44h/a of meteorological (in-cloud) icing

+12GW/a -> 59GW of new installations to cold climates by 2020!
➤ Compare: new offshore +4GW/a -> 20GW by 2020

Industry consortium project goals

- Define standardized laboratory icing wind tunnel testing conditions and testing plan for nacelle or met mast mounted ice detectors
- Define standardized reporting requirements based on the icing wind tunnel tests
- Test several ice detectors in defined icing wind tunnel conditions
- Implement results to next edition of IEA Task 19 Recommended Practices – report 2019

Timeline: May2016-Dec2017


Project lead:

Project partners:

Test program

Standard conditions, full program

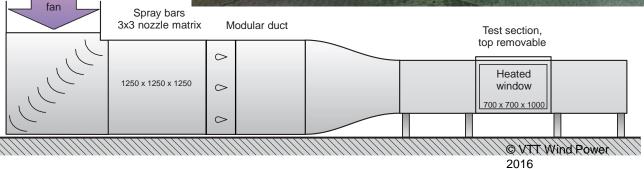
		WS	т	Target LWC	t	ISO calculated icing intensity	ISO calculated ice mass	Measured ice mass
lcing test type	Test#	[m/s]	[C]	[g/m^3]	[min]	[g/m/h]	[g/m]	[g/m]
Typical icing	1	4	-1	0.2	120	7	13	14
Typical icing	2	7	-3	0.2	120	27	54	50
Severe icing + ice ablation	3	8	-5	0.4	120+60	71	142	166 (-3)
Severe icing + ice ablation	4	10	-5	0.4	240+60	110	440	461 (-4)
Severe icing	5	10	-5	0.4	60	110	110	94
Severe icing	6	10	-5	0.4	60	110	110	100
Severe icing	7	10	-5	0.4	60	110	110	101
Extreme icing	8	20	-15	0.2	120	177	353	449

- Test conditions desinged to cover different icing conditions
- Conditions calibrated against reference ice mass according to ISO 12494

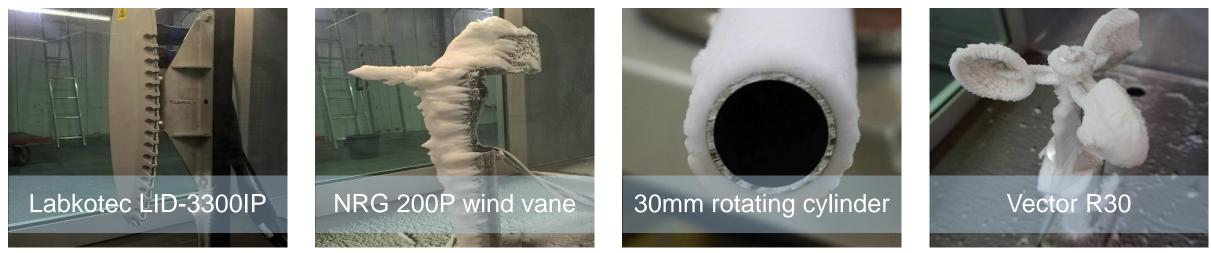
Standard conditions, limited program

		WS	т	Target LWC	t	ISO calculated icing intensity	ISO calculated ice mass	Measured ice mass
Icing test type	Test#	[m/s]	[C]	[g/m^3]	[min]	[g/m/h]	[g/m]	[g/m]
Typical icing	1	4	-1	0.2	120	7	13	14
Typical icing	2	7	-3	0.2	120	27	54	50
Severe icing + ice ablation								
Severe icing + ice ablation	4	10	-5	0.4	240+60	110	440	461 (-4)
Severe icing Severe icing Severe icing								
Extreme icing								

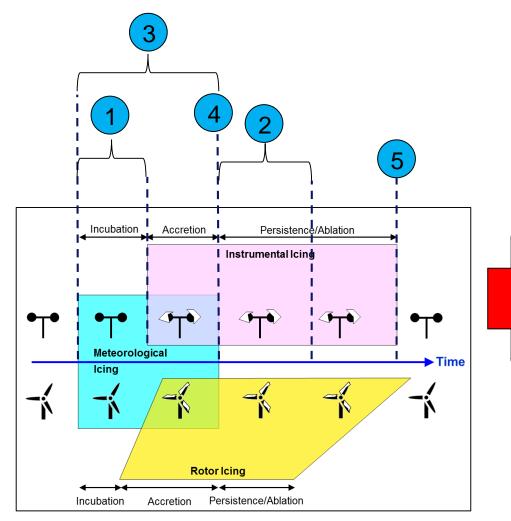
- For some cases a limited program was used
- Time considerations
 - Icemonitor
- Weather instruments, not "real" ice detectors
 - Relative humidity
 - Wind instruments



VTT icing wind tunnel


From

Instruments

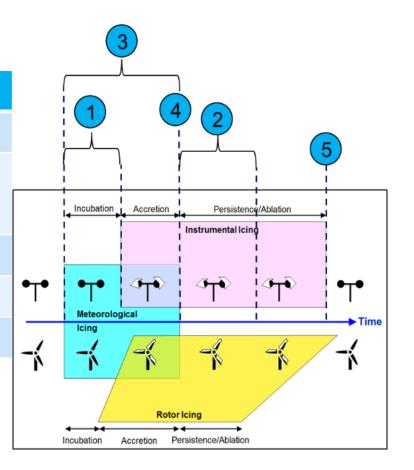


Ice detection criteria

Sensor	Detection criteria	Comment
ISO	-	Ref. measurement
LID	Ice alarm (< 60)	Factory settings
HMS	≥ 95 % & T<0°C	Typical
WAA	\leq 80 % of ref. wind speed	Typical
VEC	\leq 80 % of ref. wind speed	Typical
NRG	$10min_{std} \le 0.01$	"Typical"
COMBI	Ice mass ≥ 51	Sensor accuracy ±50g

KPIs acc. to IEA TASK 19 vocabulary

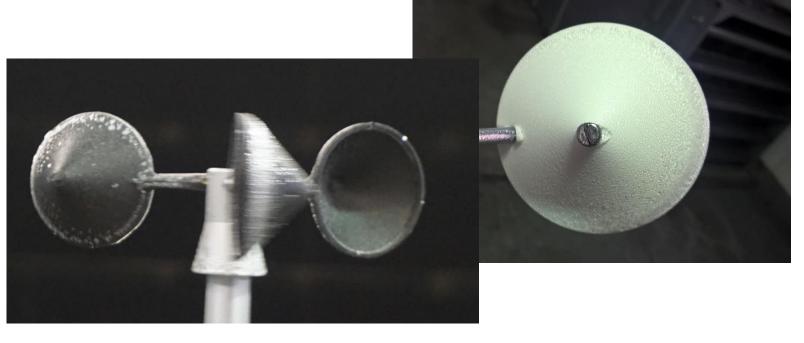
KPI	unit	NAME
1. Detection time error for icing event start (incubation)	mm:ss	START
2. Detection time error for icing event stop	mm:ss	STOP
3. Icing intensity error (ref ISO)	kg/m/h	INTENSITY
4. Ice load error (ref ISO)	kg/m	LOAD
5. Detection time error for end of instrumental icing (calc. ref ISO)	hh	INSTR. END


Smaller = better!

In the perfect ice detector all KPIs = 0

KPI: IceMonitor

KPI	Description
START	Ice mass ≥51g
STOP	Equal or below previous 10min load for 3
	x 10min
INTENSITY	Fitted line slope between KPI1-2
LOAD	KPI2 end load vs ref load
INSTR. END	Measured -4g in 1h -> extrapolate



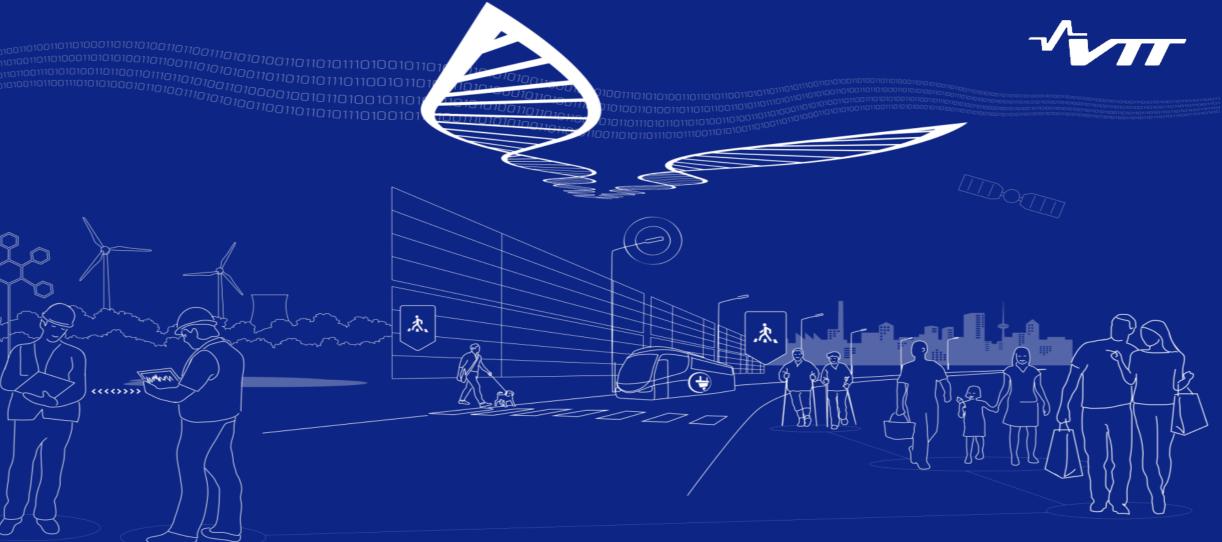
Test#1 4m/s -1°C 7g/m/h 120min

KPI SENSOR	START
LID	19min
HMS	-
WAA	-
VEC	-
NRG	1h05min

- Only KPI1 was valid for all sensors tested in test 1
- Humidity sensor and anemometers did not trigger in these conditions

Test#2 7m/s -3°C 27g/m/h 120min

KPI SENSOR	START
LID	32min
HMS	-
WAA	-
VEC	-
NRG	30min


- Only same 2 sensors triggered here
- NRG detection time half of test 1
- Lid detection time increased (!?)

Test#4 10m/s -5°C 110g/m/h 120min

KPI SENSOR	START	STOP	INTEN SITY	LOAD	INSTR. END
LID	11min	7min			
HMS	-	-			
WAA	1h11m	-			
VEC	-	-			
NRG	16min	-			
COMBI	1h37m	-35min	+48g/m/h	+3 g	46 h

- COMBI ice mass was detected correctly due to errors in intensity and in detection time compensating each other
- Anemometers only started reacting here.

Key takeaways

Takeaways (1/2)

- LID fastest in detecting startend of icing, wind vane also surprisingly fast (but only start)
- Relative humidity: again proved that this does not work as ice detector but as *ice indicator*
- Cup anemometers do not see light icing events

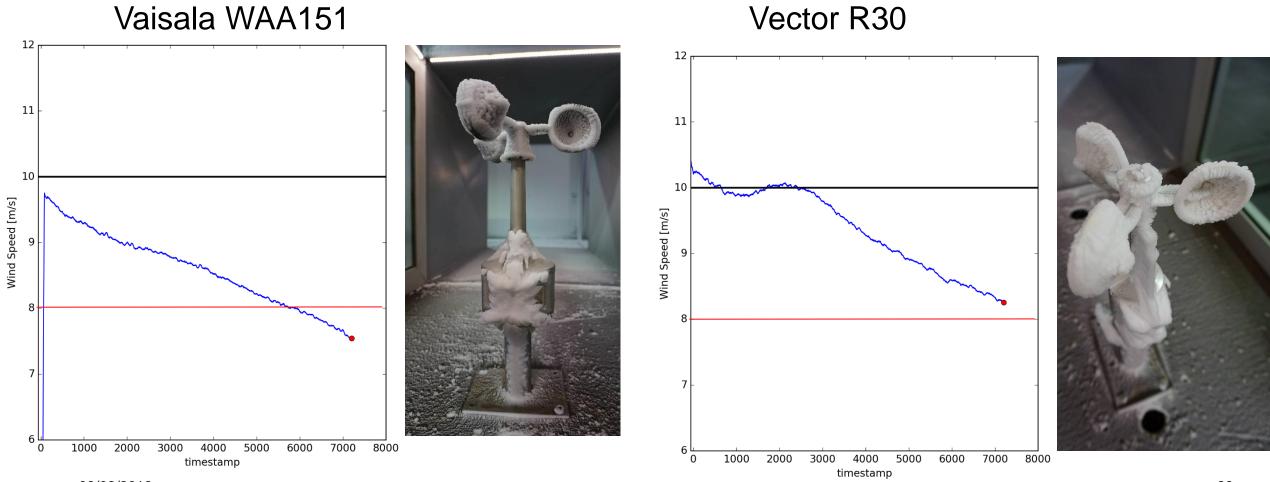
Takeaways (2/2)

- Choose your instruments based on your need:
 - Site ice assessment or
 - Turbine control
- What parts of icing event are important in your use case?
 - Site: Intensity? Ice mass? Inst ice?
 - Turbine: Start/end of an icing event?
- No sensor tested here covers all use cases or KPIs

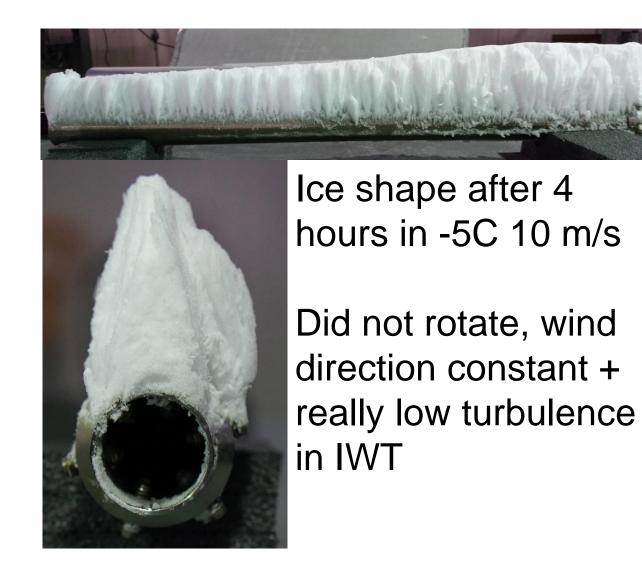
Future work & visions

- This is the future: "5 winters in 1 week" testing in Icing Wind Tunnel can
 - Substantially accelerate R&D efforts for new ice sensors
 - Bring comfort to end-customers buying sensors: <u>know what you are buying and</u> <u>what is the performance!</u>
- Continue fine-tuning test program e.g.
 longer +5h instrumental icing tests in future
- Make this a new industry standard -> input for next Task 19 Recommended Practices 08/02/2018

TECHNOLOGY FOR BUSINESS


Research Scientist <u>Timo.Karlsson@vtt.fi</u> +358 40 4847197

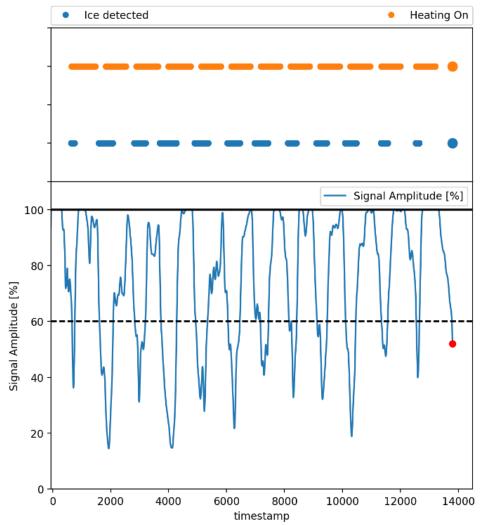
Extra: Interesting findings



Results: Cup anemometers; test 4

08/02/2018

Result: icemonitor


Results: Labkotec LID-3300IP

- more severe icing conditions -> faster alarm
- Some variance in alarm times in similar conditions
- Fastest sensor here

		ws	т	Target LWC	KPI 1	KPI 2
Test type	Test	[m/s]	[°C]	[g/m^3]	[mm:ss]	[mm:ss]
Typical icing	1	4	-1	0.2	0:19:27	-
Typical icing	2	7	-3	0.2	0:32:13	-
Severe icing + ice ablation	3	8	-5	0.4	No alarm!	No alarm end!
Severe icing + ice ablation	4	10	-5	0.4	0:10:54	7:39
Severe icing	5	10	-5	0.4	0:07:55	-
Severe icing	6	10	-5	0.4	0:08:18	-
Severe icing	7	10	-5	0.4	0:06:13	-
Extreme icing	8	20	-15	0.2	0:09:04	-
				Mean =	0:13:26	7:39

Results: Labkotec LID-3300IP

- Repeated alarms until spraybar turned off
- Meteorological icing ends once alarms stop happening
- Self heating -> no instrumental icing End of meteorological icing
- In every test except 3 and 8