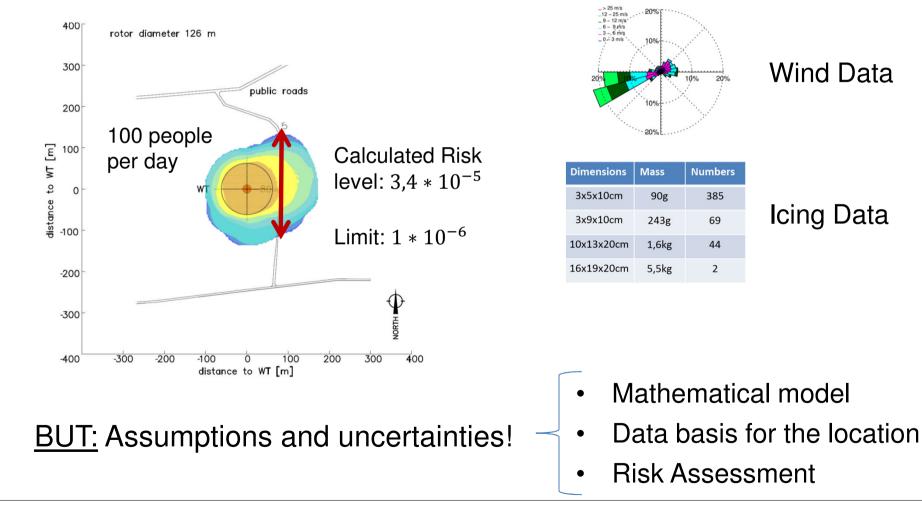
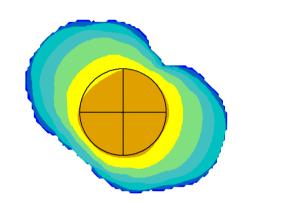

Standardization of Input Parameters for Ice-Throw / Ice-Fall Risk Assessments

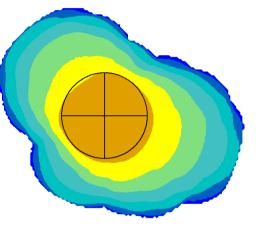
Co-Authors: J. Klappacher, N. Weber, S. Barup, S. Müller, A. Hoffmann, T. Weidl, N. Stoffels, T. Hahm, R. Bredesen, M. Lannic

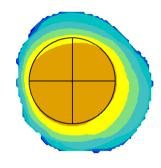

01 PROJECT MOTIVATION

- 02 RESULTS
- 03 OUTLOOK

Prevalent approach of ice-fall risk assessments




energiewerkstatt°


Wind Data

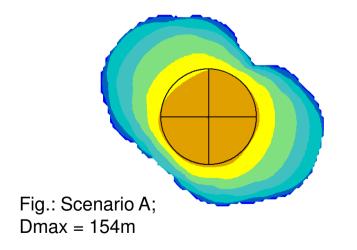
Icing Data

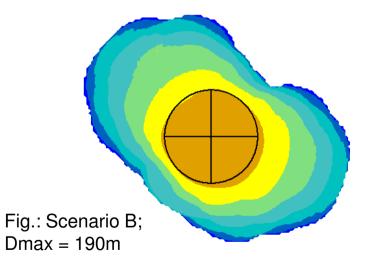
Wind speed data

10 Minutes averages, Measuring height = 50m

3 sec. Maximum readings Measuring height = 50m

1-h Reanalysis Data Measuring height = 50m


Wind Data	Max. Wind speed [m]	Max Range [m]	Average hits per sqm
10 Minutes averages	21	154	$9,7 * 10^{-3}$
3 Seconds maximum readings	27	180	$8,4 * 10^{-3}$
1 Hour reanalysis Dara	17	118	1,6 * 10 ⁻²



Size and weight distributions

	Dimensions	Mass	Numbers
50 %	3x4x8cm	86g	250
35 %	5x8x10cm	240g	175
10 %	5x10x50cm	1,5kg	50
5 %	3x20x100cm	5 <i>,</i> 4kg	25

	Dimensions	Mass	Numbers
77 %	3x5x10cm	90g	385
14 %	3x9x10cm	243g	69
9 %	10x13x20cm	1,6kg	44
0,4 %	16x19x20cm	5,5kg	2

Motivation and Project Objective

Large deviations in:

- Requirements of national / regional authorities how to assess the risk
- Stipulation of mitigation measures / regulatory requirements
- Methodologies / results of individual consultants

Project Objective:

- International guidelines/recommendations for the elaboration of ice-throw / ice-fall risk assessments
- Awareness of authorities and wind energy community about crucial parameters \rightarrow Paving the way to more transparency

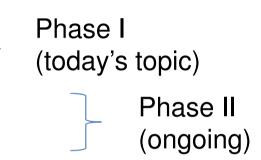
Project Organisation

8 international Partners (with different background):

- 4x Consultants
- 2x Certification bodies
- 1x WF operator
- 1x OEM

Under the umbrella of IEA Wind Task 19:

- https://www.ieawind.org/task 19.html
- Publication of International Guidelines (not a standard)


WindEUROPE 2017, Amsterdam

Methodology

Unbundling in three separate sub-processes:

- Details of the mathematical model
- Relevant data basis (wind and icing)
- Risk aspects

Working approach:

- Cross-comparisons on predefined case scenarios
- Sensitivity analysis with different parameters

Identification of so-called Highly Recommended Aspects

(Recommendations about the 'Must-haves')

01 PROJECT MOTIVATION

02 RESULTS

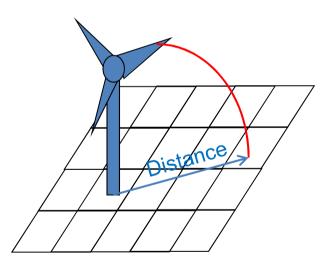
03 OUTLOOK

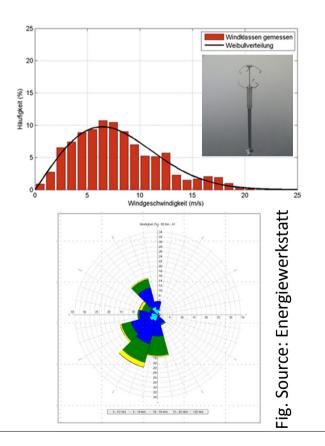
WindEUROPE 2017, Amsterdam

Mathematical Model

(i.e. statistical trajectory model)

Highly recommended aspects for the trajectory model:




Fig.: Calculation of Trajectories

- Turbine parameters:
 - Hub height, rotor diameter, operational mode.
- Consider drag! (Lift can be neglected.)
- Topography in case of complex terrain (DGM or via post-processing)
- Physical parameters:
 - Air density, vertical wind profile, radial distribution of ice on the blade, no. of relevant fragments.

Wind Data Basis

Highly recommended aspects:

- Based on 10 minutes' averaging, covering at least one icing season:
 - Wind speed & direction
- Long term correction (if available dataset cannot be regarded as a long term)
- Representative for the turbine location (horizontal and vertical extrapolation)
 - Wind shear
- Wind statistics representative for periods when icing and melting may occur
 - Filtering shall not be done to narrow!

Icing Data Basis

Estimation of Amount of ice fragments:

1. Scaling of in situ ice fall / throw observations (e.g. Gütsch, Icethrower, R.Ice...)

$$N_{site} = N_{obs} * sf_{ice} * sf_{rotor} * sf_{op}$$

- N_{site}...amount of ice at the site of interest
- *N*_{obs}...amount of ice from site measurements
- sf_{ice} , sf_{rotor} , sf_{op} ...scaling factors for site icing conditions, rotor dimensions and operational mode
- 2. Ice load distribution formula (e.g. IEC 61400-1 Ed.4): Not site-specific!
- 3. Ice accretion simulations: Future potential?!

01 PROJECT MOTIVATION

02 RESULTS

03 OUTLOOK

WindEUROPE 2017, Amsterdam

Aspects of Risk Assessment (Phase II)

- General approach of risk assessment
 - ALARP / MEM vs. LIRA
 - Individual risk vs. collective risk
- Thresholds and factors of uncertainty
 - Kinetic energy vs. weight of relevant ice fragments
 - Acceptable risk levels for different stakeholders
- Mitigation measures (warning signs, flashing lights...)
 - Efficiency / effectiveness of the individual measures
 - Reduction ration: Which order of magnitude?

International Guidelines for the Elaboration of Ice-fall / Ice-throw Risk Assessments (To be published in Fall 2018)

Contact details:

Andreas.Krenn@energiewerkstatt.org

+43 7746 28212 17

Thanks for your Attention.