

Improving performance in cold climates Winterwind 2017, Skellefteå

-

Restricted © Siemens AG 2017

1.1

Lennart Frølund, February 2017

Agenda

SIEMENS

Cold climate features

Experience

Testing and validation of performance

Next steps and challenges

Restricted © Siemens AG 2016

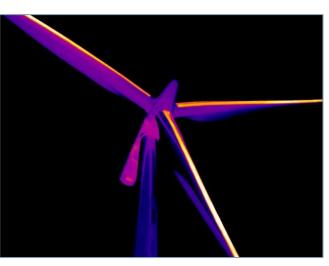
Page 2 Feb. 2017

SIEMENS

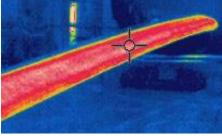
Integrated blade heating elements offers distinct advantages

Integrated blade heating elements offers distinct advantages

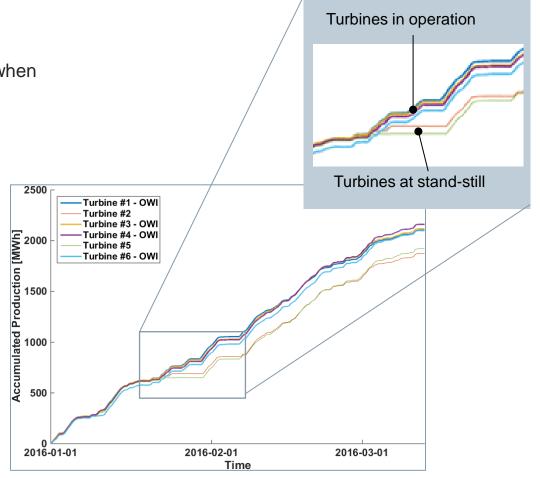
- Electrical resistance heating, using integrated carbon fibre
- Covering aerodynamic relevant parts of the blade
- Heating element adjacent to surface for optimized heat transfer and minimum power losses.
- No aerodynamic penalty, noise- or structural impact


Well adapted production setup secures high quality, through extensive testing and validation

- Electrical system
- Heat distribution
- Thermocycling (1600 cycles)
- Uneven thermal expansion (glass vs carbon)
- Lightning reception


Restricted © Siemens AG 2016

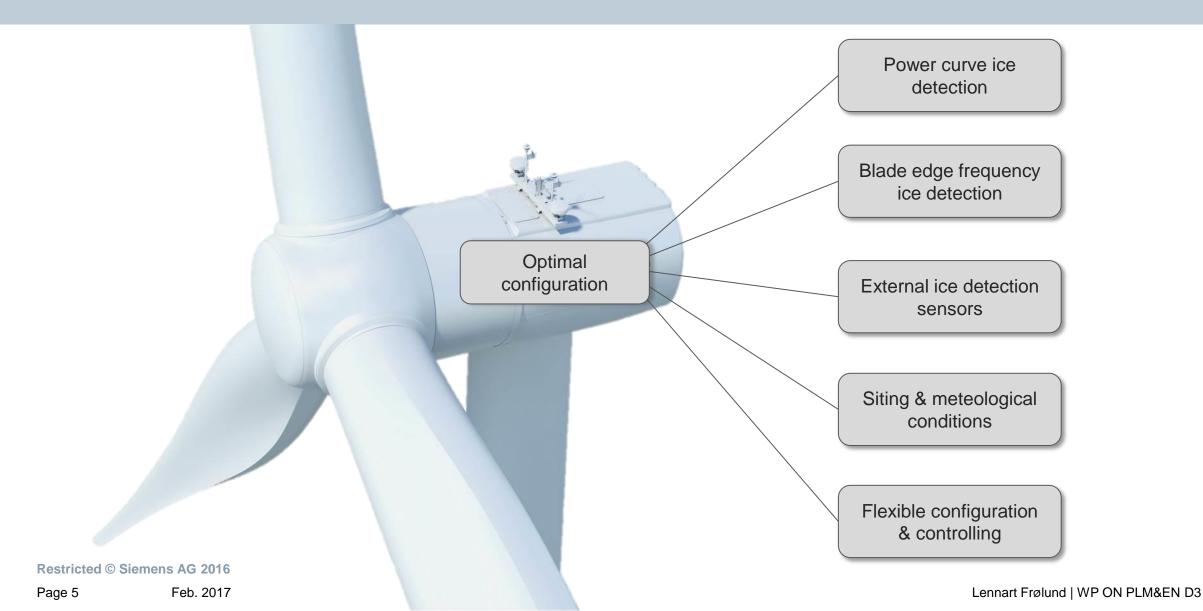
Page 3 Feb. 2017



Special designed operation mode for cold climate

Siemens Wind Power offers Operation With Ice

- Special designed operation mode for turbines in icing conditions
- The turbine controller automatically activates Operation with Ice mode when ice is detected
- Turbine operational parameters optimizes for operation with changed aerodynamic profile
- Design turbine lifetime not compromised
- Tested and validated on 45 turbines, in winter 2015/2016
- Compatible with de-icing system

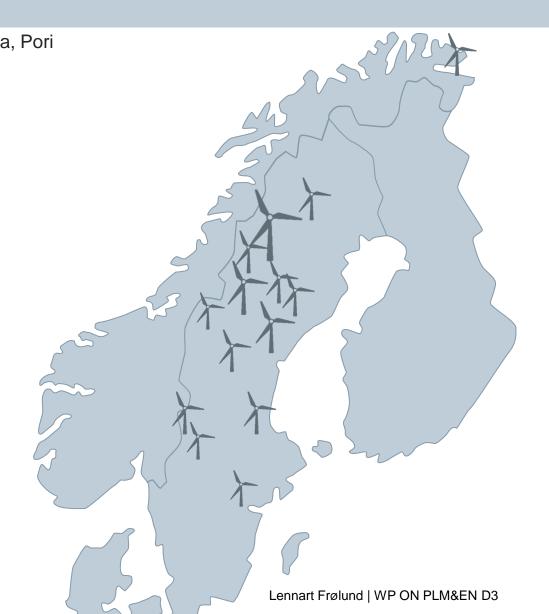


Restricted © Siemens AG 2016 Page 4 Feb. 2017

Lennart Frølund | WP ON PLM&EN D3

SIEMENS

Flexible ice detection solutions Reliable and sensitive ice detection provides higher performance



SIEMENS

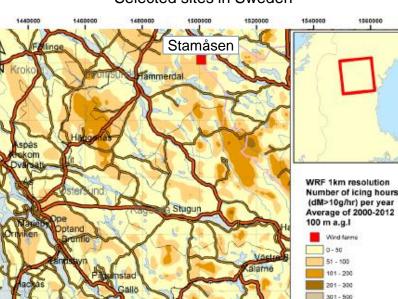
Siemens have long experience with de-icing turbines More than 300 turbines with de-icing installed

SIEMENS

	1994-	18 x Bonus turbines	Lammasoeivi, Suorva, Vemhån, Olos, Katka,
	2011	1 x SWT-2.3-101	Kyrkberget
		9 x SWT-2.3-101	Korpfjället
		4 x SWT-2.3-101	Raftsjöhöjden
		1 x SWT-2.3-101	Brahehus
	2012	6 x SWT-2.3-101	Åsen-Kapstenberget
	2013	1 x SWT-2.3-113	Stamåsen
		26 x SWT-3.0-113	Mullberg
		10 x SWT-2.3-101	Falläsberget
		37 x SWT-2.3-113	Mörtjärnberget
		30 x SWT-2.3-101	Trattberget-Skallberget
	2014	33 x SWT-3.0-113	Ögenfägnaden
		90 x SWT-3.0-113	Björkhöjden 1 & 2
		15 x SWT-3.0-101	Raggovidda
	2015	9 x SWT-3.2-113	Juktan
		11 x SWT-3.2-113	Port of Antwerp
	2016	5 x SWT-3.2-113	Stormon
Restricted © Siemens AG 2016			
	Page 6	Feb. 2017	

Siemens utilizes track record to improve performance

Basis for the analysis:


- Three sites in central Sweden, covering 64 turbines
- Turbine production data from 2 3,5 years of operation

Key areas of interest:

- Validation of de-icing performance
- Feasibility of using reference turbines
- Influence of site- and meteological conditions
- Variations and uncertaincies

Aims and next steps:

- Baseline for optimization of de-icing site configuration and control strategies
- Validation and proof of efficiency
- Improving knowledge on warranty validation methods
- Take-aways and statistics used in new product development

Mörttjärnberget

Mullberg

Selected sites in Sweden

SIEMENS

Lennart Frølund | WP ON PLM&EN D3

501-1.000

Restricted © Siemens AG 2016 Page 7 Feb. 2017

Thanks for your attention

Public © Siemens AG 2017

Carti

Lennart Frølund, February 2017