

MODELING THE DYNAMIC BEHAVIOR OF WIND FARM POWER GENERATION

BUILDING UPON SCADA SYSTEM ANALYSIS

Beanán O'Loughlin Senior Renewable Energy Analyst

Dr. Philippe Beaucage Lead Research Scientist

Brian Kramak Sr. Project Manager

Dr. Nick Robinson Director of OpenWind

Michael C. Brower *President and CTO*

Assessed resource and energy for over half of all India wind projects over the last two years.

125,000

Megawatts (MW) Assessed

Approximately 50% of US wind projects financed in 2015 used AWST Energy Production Reports.

43 GW

We provide renewable energy forecasting services to over 43 gigawatts (GW) of capacity.

Consulted to about a third of all Brazil wind projects that came online over the last two years

33%

30+ Years of Experience

tetetetete

85%

of our staff is comprised of engineers, meteorologists and environmental specialists.

80+

Number of Countries Where We Worked

Presentation Overview

MODELING THE DYNAMIC BEHAVIOR OF WIND FARM POWER GENERATION

- Project Scope
- Overview of operational plant data
- Atmospheric modeling
- Time series energy modeling
- Conclusion: key accomplishments, challenges, next steps

Wind Power Time Series

TYPICAL APPLICATIONS

- Wind Resource Assessment: Annual Energy Production (AEP) estimates based on time-varying atmospheric conditions and plant losses
- Operational performance: analysis of historical wind plant generation
- Environmental curtailments
- Grid integration studies

Wind farms in Québec, Canada (under contract with Hydro-Québec Distribution) 39 WIND FARMS : 18 IN OPERATION + 21 PLANNED OR IN CONSTRUCTION

Methodology for Time Series Energy Modeling

- Wind (u,v,w),
- Temperature,
- Pressure,
- Air Density,
- Relative Humidity,
- etc.

Atmospheric Modeling

MESOSCALE NUMERICAL WEATHER PREDICTION (NWP) MODEL

http://www.jma.go.jp/jma/jma-eng/jmacenter/nwp/nwp-top.htm

WS TRUEPOWER UL and the UL logo are trademarks of UL LLC © 2017. Proprietary & Confidential.

Numerical Weather Prediction Modeling WEATHER RESEARCH AND FORECASTING (WRF)

- WRF is built with state-of-the-art data assimilation, dynamic and physics schemes
- WRF is open-source
 - Iarge community of developers
 - updated twice a year
- WRF is fast

Validation of the Atmospheric Model

SUMMARY OF VALIDATION AT 23 PRE-CONSTRUCTION MET MASTS

Met variable	Mean bias	Hourly R ²	Daily R ²	
Wind speed	0.09 m/s	0.65	0.82	

Methodology for Time Series Energy Modeling

- Wind components (u,v,w),
- Temperature,
- Pressure,
- Air Density,
- Relative Humidity,
- etc.

- Gross Energy
- Plant losses
- Net Energy

Time Series Energy Modeling in Openwind CONVERSION TO POWER

* WRG = Wind Resource Grid

Synthetic Wind Power Time Series

ESTIMATING NET POWER GENERATION

UL and the UL logo are trademarks of UL LLC \odot 2017. Proprietary & Confidential

UEPOWER

Electrica

Environmental:

lcing

Environmental:

Non-icing

Availability

WIND TURBINE DOWNTIME

- Time-varying wind plant availability is simulated through a Markov Chain
- 18 operational projects providing a total of 52 wind-farm years

Transition matrix								
Availability	(0.99,1]	(0.95,0.99]	(0.85,0.95]	(0.75,0.85]		(0.05,0.15]	(0.01,0.05]	(0,0.01]
(0.99,1]	92%	7%	0%	0%		0%	0%	0%
(0.95,0.99]	7%	89%	4%	0%		0%	0%	0%
(0.85,0.95]	1%	13%	84%	2%		0%	0%	0%
(0.75,0.85]	1%	2%	13%	77%		0%	0%	0%
(0.05,0.15]	4%	2%	2%	1%		68%	7%	2%
(0.01,0.05]	1%	1%	2%	2%		3%	75%	6%
(0,0.01]	2%	0%	7%	7%		8%	6%	35%

Observed Icing Losses

Wind Plant	Annual Icing Losses				
1	3.9%				
2	0.5%				
3	6.8%				
4	1.7%				
5	2.2%				
6	3.6%				
7	20.1%				
8	2.7%				
9	15.1%				
10	2.9%				
11	2.2%				
12	1.0%				
13	4.7%				
14	5.8%				
15	11.1%				
16	0.4%				
17	1.1%				
18	2.0%				

IDENTIFYING ICING EVENTS FROM SCADA DATA

EFFECTIVE SPEED PENALTY

- Predictand (Y) is Effective Speed Penalty (ESP)
- Predictors (X_i) are taken from WRF time series
- Build an icing model at the turbine level
- Train statistical model with a subset of the WRF data under potential icing conditions

ESP VS. PREDICTORS

NON-LINEAR FUNCTIONS BASED ON GAM: ESP VS. PREDICTORS

AWS TRUEPOWER

AVAILABILITY LOSSES

ANNUALIZED ICING LOSSES

Wind Farm #2 (GE turbines)

Conclusion

KEY ACCOMPLISHMENTS

- Simulated time-varying wind plant losses including icing and the power consumption of the rotor blade heating system
- Simulated net wind power generation are well aligned with the actual generation
- Monthly/seasonal trend in net power are well captured by the simulation system
- On average, modeled icing losses are on par with the observed icing losses although large discrepancies may exist at single wind farm (mainly with spoiler issue)

Conclusion

NEXT STEPS

 Add OEM specific controls to the rotor blade heating system (RBHS) in OpenWind

(e.g. triggers/threshold for start and end of RBHS)

• Add turbine shutdown due to icing loads on blades

Thank you

boloughlin@awstruepower.com

