

A novel approach for combining measurements and models for icing predictions

Emilie C. Iversen¹, Bjørn Egil Kringlebotn Nygaard¹, Øyvind Byrkjedal¹, Finn Nyhammer¹, Øyvind Welgaard²

> ¹Kjeller Vindteknikk AS ²Statnett SF

emilie.iversen@vindteknikk.no

Statnett

Winterwind, Skellefteå, 07.02.2017

Overview

- Motivations
- Measurement site in the Frontlines project
- New Ice measurement instrument
- How to use this instrument to derive cloud water
- How to use the derived cloud water to calculate icing on structures
- How to use the derived cloud water to validate mesoscale models

Motivations:

- Lack of reliable measurements of one of the key driving ice accumulation parameters; cloud liquid water content (LWC).
- Need this in order to validate our mesoscale models used as input for icing calculations.
- If we have robust measurements of LWC we can use this to calculate icing on structures
- which in turn can be used to e.g. calculate production loss due to icing.

Ålvikfjellet (1100 m a s l)

Mora

Ålvikfjellet, Hardanger

IceSensor

420 kV line

Test span

Meteorological measurements

Power supply

New robust ice load sensor, KVT IceTroll

- Measure weight of accreted ice
- Forced rotation 1 rpm
- Cylinder dimensions:
 - Length = 1m
 - Diameter = 30 mm
- Reference object (ISO standard)

Complete time series of ice load on IceTroll, measured temperature and wind speed

What can we do with the IceTroll?

- Better measurements of ice load
- Following the ISO standard we measure icing intensity
- Estimates of Liquid Water
 Content (LWC)
- Possibility to calculate icing on other structures
- Possibility to validate mesoscale
 models

ISO standard (Finstad et. al 1988)

Icing intensity on rotating cylinder (reference object):

$$\frac{dM}{dt} = \alpha_1 \alpha_2 \alpha_3 \cdot LWC \cdot A \cdot V$$

 α_1 – collision efficiency, α_1 =f(V,d,D) α_2 – sticking efficiency, $\alpha_2 \approx 1$ α_3 – accretion efficiency, α_3 = f(V,d,LWC,T,e,D, α_1) LWC – cloud liquid water content A – collision area, perpendicular to flow V – Wind speed

Available:

- Ice mass on reference object (M)
- Wind speed (V)
- Temperature (T)

Assumptions:

- Ice density
- Droplet concentration

Example of how to use the derived LWC to calculate ice mass on other structures (power line)

Ice load on power line (test span)

- Compare calculated ice load (ISO) with ం measured ice క్రీ load on test span.
- Calculated ice load will vary with the choice of droplet concentration (N).
- Reasonably good fit

Example of validation of LWC from mesoscale model (WRF)

Ice load on power line (test span)

- Compare calculated ice load on test span with LWC from WRF and with "measured" LWC from IceTroll.
- Ice load will vary with the choice of droplet concentration (N).
- There is a relatively good fit which indicates WRF LWC is within reasonable limits.

Summary

- A newly developed ice load sensor is tested
 - Forced rotation
 - Vertical cylinder
- Measurements of:
 - Ice load according to ISO 12494
 - Icing intensity according to ISO 12494
 - Liquid water content (post processing)
- Which can be used to:
 - Detect ice
 - Validate mesoscale models used for icing calculations
 - Calculate icing on structures

16/02/02

-10

16/01/29

16/01/3

Thank you for your attention!

The partners of the FRonTLINES project:

KJELLER VINDTEKNIKK

Meteorologisk institutt 150 år

STRI

Statnett

Uit/ NORGES ARKTISKE UNIVERSITET

VIT