Comparison of icing measurements from nacellemounted and blade-mounted ice sensors with icing simulations on a wind turbine blade

Winterwind 2017, Skellefteå, Sweden

Company: Labkotec Oy Author: Tatu Muukkonen (Product Manager)

Content of the presentation

- 1. History and present status of Labkotec Ice detectors
- 2. VTT Pre-sertificate 2016 update from 2011
- 3. Blade-mounted Ice detectors
- 4. Summary

History of the nacelle-mounted ice detectors

	รักการการการกระบบ เกิดการการการกระบบ เกิดการการการกระบบ		And a second sec
	C 0 0		

	LID-3210C Control Unit and Ice Sensor	LID-3210D Control Unit with – Ice Alarm LED – Test button	LID/IS Ice Sensor – Sensitivity improved	LID-3300IP Control Unit – Web server (remote access) LID/ISD Ice Sensor – Sensitivity further improved
1994 ->	20022008	1Q/20082014	4Q/20082014	1Q/2010

" Comparison of icing measurements from nacelle-mounted and

Component Certificate

CC-GL-013A-2014

GL Renewables Certification (GL RC)

Normative references: GL Rules and guidelines – IV Industrial Services-Part 1 "Guideline for the the Certification of Wind Turbines", edition 2010.

Ice Detector LID-3300IP has been assessed by GL Renewables Certification (GL RC), concerning the Design, the "Implementation of the design requirements in Production and Erection" IPE, the prototype Testing and manufacturer's quality system.

The GL certificate is valid for Ice Detectors with Software version of v1.30 and newer.

LID-3300IP

GL certificate:

- "Safe to use in wind turbine"
- "Detects in-cloud and freezing rain ice".

Cert	ificate 😐	ÜVRheinland
Certificate no.	CU 72131267 01	
License Holder: Labkotec Oy Myllyhaantie 6 FI-33960 Pirkkala Finland	Manufacturing Plant: Jotel Oy Ilkontie 1 36241 Kangasala Finland	
Test report no.: USA-AF	31282519 001 Client Reference: Jarkko Laton	en
CAN/CS CAN/CS	SA-C22.2 NO. 61010-1-04+GI1 (R2009) SA-C22.2 NO. 61010-2-010-04 (R2009)	
Certified Product: Ice I	Detector for Wind Turbines	inner For Unite
Certified Product: Ice I	Detector for Wind Turbines L	icense Fee - Units
Certified Product: Ice I Model Designation	Detector for Wind Turbines L : 1) Control Unit: LID-3300IP 2) Ice Sensor Unit: LID/ISD Ice Sensor	icense Fee - Units
Certified Product: Ice I Model Designation Rated Voltage: Rated Power: Protection Class: Ingress Protection Special Remarks: 7 turbine power syst	Detector for Wind Turbines L : 1) Control Unit: LID-3300IP 2) Ice Sensor Unit: LID/ISD Ice Sensor 1) AC 230V, 50/60Hz (Load: AC 230V) 2) AC 230V 1) TVA (Load: 350W) 2) 350W I 1 : IP65 To be installed with an AC 230V wind tem only.	icense Fee - Units 7
Certified Product: Ice I Model Designation Rated Voltage: Rated Power: Protection Class: Ingress Protection Special Remarks: 7 turbine power syst Appendix: 1, 1-5	Detector for Wind Turbines L : 1) Control Unit: LID-3300IP 2) Ice Sensor Unit: LID/ISD Ice Sensor 1) AC 230V, 50/60Hz (Load: AC 230V) 2) AC 230V 1) 7VA (Load: 350W) 2) 350W I I : IF65 To be installed with an AC 230V wind tem only.	icense Fee - Units 7 7
Certified Product: Ice I Model Designation Rated Voltage: Rated Power: Protection Class: Ingress Protection Special Remarks: -7 turbine power syst Appendix: 1, 1-5	Detector for Wind Turbines L : 1) Control Unit: LID-3300IP 2) Ice Sensor Unit: LID/ISD Ice Sensor 1) AC 230V, 50/60Hz (Load: AC 230V) 2) AC 230V 1) 7VA (Load: 350W) 2) 350W I 1 : IP65 To be installed with an AC 230V wind tem only.	kense Fee - Units 7 7 7 Date of Issue (daymo/yr) 26/04/2013

LID-3300IP

UL/CSA certificate:

- "Safe to use in wind turbine"
- Now selling also in the USA and Canada.

Winterwind 2017 / Labkotec " Comparison of icing measurements from nacelle-mounted and

PRE-CERTIFICATION (2016) of LABKOTEC LID-3300IP ICE DETECTOR FOR WIND ENERGY APPLICATIONS (VTT-CR-03658-16)

Motivation

This pre-certificate (2016) was made to verify the ice detection capability of Labkotec LID-3300IP ice detector control unit and LID/ISD ice sensor. This certificate is an update to pre-certificate (VTT-CR-04740-11) prepared by VTT on June of 2011.

Winterwind 2017 / Labkotec " Comparison of icing measurements from nacelle-mounted and " and mounted ice concerts with icing cimulations on a wind turbing blade"

PRE-CERTIFICATION (2016) of LABKOTEC LID-3300IP ICE DETECTOR FOR WIND ENERGY APPLICATIONS (VTT-CR-03658-16) Summary

Based on VTT Icing Wind Tunnel (IWT) tests and TURBICE[™] ice accretion simulation results, it can be said that the LID-3300IP ice detector is capable for detecting the start of an in-cloud icing event and freezing rain event at the installation position in the wind turbine and meteorological station applications. With current sensor ice alarm factory settings (amplitude value 60 %), in "standard" icing conditions are detected within 54 minutes and in "harsh" icing conditions in 18 minutes after start of in-cloud icing event, resulting to simulated blade tip section ice thicknesses of 12 mm and 6 mm respectively.

Winterwind 2017 / Labkotec

" Comparison of icing measurements from nacelle-mounted and

Table 1. Summarized VTT Icing Wind Tunnel test results and TURBICE[™] ice mass simulations in "standard" icing conditions. /3, 4/

Icing Wind Tunnel Tests Standard Icing Condition 013E090216P	Average Time [h:mm]	Average deviation [h:mm]	Ice Mass [kg] one blade
1. Amplitude 99 %	0:31	0:03	8
2. Amplitude 90 %	0:33	0:03	no simulation results
3. Amplitude 80 %	0:36	0:04	no simulation results
4. Amplitude 70 %	0:53	0:03	no simulation results
5. Amplitude 60 %	0:54	0:03	15
6. Amplitude 50 %	1:20	0:18	no simulation results
7. Amplitude 40 %	1:28	0:00	26

Winterwind 2017 / Labkotec

" Comparison of icing measurements from nacelle-mounted and

Icing Wind Tunnel Tests Standard Icing Condition 013E090216P 1. Amplitude 99 % 2. Amplitude 90 % 3. Amplitude 80 % 4. Amplitude 70 % 5. Amplitude 60 % 6. Amplitude 50 % 7. Amplitude 40 %

25 Blade Sections: 20 -----LA05 ---------LA06 lce Thickness [mm] 4.5 15 ---------------LA07 -------LA08 1. 2. 3. ------LA09 10 ----LA11 5 ----------LA12 0 30 40 50 60 70 80 90 100 Time [min]

Figure 2. TURBICETM ice thickness [mm] according to simulation results in "standard" icing conditions. /3, 4/ At ice alarm moment (54 minutes - amplitude value 60 %) the simulated ice thickness varied between 2 mm – 12 mm. This time is also marked with number 5 and pointed with red arrow.

Winterwind 2017 / Labkotec

" Comparison of icing measurements from nacelle-mounted and

Table 2. Summarized VTT Icing Wind Tunnel test results and TURBICE[™] ice mass simulations in "harsh" icing conditions /3, 4/

Icing Wind Tunnel Tests Harsh Icing Condition 013E090216P	Average Time [h:mm]	Average deviation [h:mm]	Ice Mass [kg] one blade
1. Amplitude 99 %	0:10	0:00	5,3
2. Amplitude 90 %	0:11	0:00	5,3
3. Amplitude 80 %	0:11	0:00	no simulation results
4. Amplitude 70 %	0:17	0:00	no simulation results
5. Amplitude 60 %	0:18	0:00	no simulation results
6. Amplitude 50 %	0:18	0:00	no simulation results
7. Amplitude 40 %	0:18	0:00	no simulation results

" Comparison of icing measurements from nacelle-mounted and

12 10 Blade Sections: ____LA05 8 lce Thickness [mm] 5. -LA06 6. 2. 4. 7. -----LA07 1 3. 6 -------------LA08 \rightarrow LA09 * LA10 -LA11 2 -----LA12 0 10 25 30 35 15 20 40

Time [min]

Figure 3. TURBICETM ice thickness according to simulation results in "harsh" icing conditions. /3, 4/ At icing alarm moment (18 min - amplitude value 60 %) the simulated ice thickness varied between 1 mm – 5 mm. This time is also marked with number 5 and pointed with red arrow.

Winterwind 2017 / Labkotec

" Comparison of icing measurements from nacelle-mounted and

blade-mounted ice sensors with icing simulations on a wind turbine blade "

Harsh Icing Conditions / Ice Accretion Simulations

LID-3300IP Type 2 (release 2017)

Functional safety:

- Functional safety level has been further improved from PLb to PLc/PLd (TBD)
- According to the standard ISO 13849-1.

System interfaces:

- Power
- Signal
- Heating
- RS-232
- Analog outputs
- Relay outputs
- Ethernet RJ-45
- Optical fibre.

Compatibility:

Fully compatible with current LID-3300IP; same features, interfaces and look and feel.

Interface upgrades:

- Improved transient voltage protection
- RS-232 and analog outputs isolated
- Safety relay outputs with feedback
- Easy access connectors.

Ice alarm test:

- Ice sensor starts sending low signal levels, which simulate a real icing condition
- Therefore, the whole chain of safety functions will be tested.

Winterwind 2017 / Labkotec

" Comparison of icing measurements from nacelle-mounted and

Functional safety

Development on nacelle-mounted ice detector LID-3300IP Type 2 (release 2017) has been focusing on functional safety aspects. Comparing to the current product, LID-3300IP, functional safety classification of LID-3300IP Type 2 has been further improved based on customer needs.

Improved safety aspects include, for example, safety relays where relay position is constantly monitored and a separate safety processor is applied to double check information inside the ice detector. Also more advanced diagnostics is included.

Functional safety analysis has been carried out according to the standard ISO 13849-1. LID-3300IP base release has PL value b and LID-3300IP Type 2 has higher PL value c/d (TBD).

History of the blade-mounted ice detector 1994

First ever blade-mounted Ice detector was delivered by Labko Oy (nowadays Labkotec Oy) to Finland, Pyhätunturi, 1994.

 \rightarrow Start blade heating

Figure BF. The first blade mounted ice detector delivered by Labko Oy. Pyhätunturi test station 1994.

" Comparison of icing measurements from nacelle-mounted and

Winterwind 2017 / Labkotec

Status of the blade-mounted ice detectors

- Labkotec is developing new generation ice detection system
- Ice sensors are mounted on the turbine blades
- Direct ice accumulation measurement and ice detection from the blades
- Radio communication between the sensors and the control unit.

Blade-mounted ice detectors

Installation:

- 3 MW turbine in Finland
- Retrofit installation
- Installed in 2016.

References:

- LID-3300IP
- LID-3300IP Type 2 (release 2017).

Blade-mounted ice detectors

Analysis:

- 24 h, T=-3...-6C
- LID-3300IP (reference)
- Blade-mounted sensor.

Conclusion:

 Correlation between LID-3300IP and blademounted sensor.

Winterwind 2017 / Labkotec

" Comparison of icing measurements from nacelle-mounted and

Summary

- Labkotec is a pioneer and market leader in wind turbine ice detection.
- Labkotec has and will introduce new innovations for ice detection regardless of the fact that no standards, published best practices or test methods exist for icing or ice detection testing
- Labkotec is developing a blade-mounted Ice detector to detect ice directly on wind turbine blades.

Winterwind 2017 / Labkotec " Comparison of icing measurements from nacelle-mounted and