

Heiner Körnich Anna Sjöblom Hans Bergström

Uncertainty Quantification for Wind Power Forecasts in Cold Climates

Image from: https://www.novascientia.net/articles/225/A-song-of-Ice-and-Wind-turbines

Jennie P. Söderman Heiner Körnich Anna Sjöblom &

Contact:
jennie.perssonsodermar
@geo.uu.se

Hans Bergström

This project is supported by Energymyndigheten.

Uncertainties in the modelling chain

Goal: Quantify the uncertainty of the *icing* model

Uncertainty quantification method

Jennie P. Söderma Heiner Körnich, Anna Sjöblom, & Hans Bergström

Contact: jennie.perssonsodermar @geo.uu.se

This project is supported by Energymyndigheten.

Needed: Uncertainty in input parameters

Uncertain parts of the icing model

The icing model is based on the Makkonen model (Makkonen 2000) with some additions.

Uncertain parameters and estimated variation:

Ice shedding factor

Mean: 8

Std: 4

Mean: 300 cm⁻³

Std: 200 cm⁻³

Wind erosion (Used when Wind speed > 5ms⁻¹)

Mean: 10 g/ms⁻¹

Std: 5 g/ms⁻¹

Heat transfer coefficient - accretion efficiency & sublimation

Droplet number concentration

(Altering nusselt number with constant)

Mean: 0.03

Std: 0.02

Jennie P. Söderman, Heiner Körnich Anna Sjöblom & Hans Bergström

Contact: jennie.perssonsodermar @geo.uu.se

This project is supported by Energymyndigheten.

Jennie P. Söderman, Heiner Körnich Anna Sjöblom & Hans Bergström

Contact: jennie.perssonsodermar @geo.uu.se

This project is supported by Energymyndigheten.

Optimization of ensemble size with deterministic sampling

Random sampling

Deterministic sampling

Deterministic sampling is a method used to optimize ensemble size for uncertainty estimations.

Jennie P. Söderman Heiner Körnich Anna Sjöblom & Hans Bergström

Contact: jennie.perssonsodermai @geo.uu.se

This project is supported by Energymyndigheten.

Expected results

Deterministic sampling can generate an efficient estimation of the icing forecast uncertainty for operational use!

Challenges

- •Most uncertainties is in the input from the NWP model?
- Limited observations of icing
- •Non-linear model requires more complex deterministic sampling.
- Covariance between uncertain parameters?