Icing – the Dilemma

Detecting icing...

- Build-up react to reality
- Conditions deal with reality

Can we detect the conditions that lead to icing?

Liquid water in atmosphere and sub zero temperatures?

Detecting sky condition reveals information about atmosphere

VAISAL

- Clouds = water in the sky
- Sub zero temperature = freezing

Evolution of an Icing Event

Icing Condition Detection

Detecting Clouds by Ceilometer

- Proven lidar technology
- Cloud information
 - Cloud base
 - Cloud backscatter
 profile and intensity
 - In-cloud visibility

Options for Temperature

- Nacelle measurement
- Ground measurement
- Numeric weather model

Information from Ceilometer System

Method Evaluation in 2014 – 2016

• How does the method compare against in-situ icing detection?

Test case	RSD setup	Icing reference	RSD Icing Alarm Threshold	Reference Icing Alarm Threshold
A – Finland	Vaisala CL31	Heated/non-heated anemometers [@100m]	Cloud base height <100m + ground temperature <0°C	>20% deviation on wind speed + temperature <0°C
B1 – Germany	Leosphere WindCube	Heated/non-heated anemometers [@190m]	Backscatter signal strength + ground temperature	
B2 - Germany	CHM15K Ceilometer	Heated/non-heated anemometers [@190m]	Cloud base height <190m + ground temperature <0°C	
C – Norway	Leosphere WindCube	Combitech ice detector [@90m]	Backscatter signal strength + ground temperature	Ice mass on device > 50g/m
D1 – Finland	Leosphere WindCube	Turbine SCADA	Backscatter signal strength + ground temperature	Production loss below site specific P10 value >30 min
D2 - Finland	Vaisala CL31	Turbine SCADA	Cloud base height <100m + ground temperature <0°C	

VAISAL

Validation of remote sensing methods for ice detection, WindEurope 2016,

Timo Karlsson, Ville Lehtomäki – VTT, Juha Paldanius – Vaisala, Jaakko Kleemola – Suomen Hyötytuuli, Martin S. Grønsleth, Kjeller Vindteknikk, Zouhair Khadiri-Yazami – Fraunhofer IWES

Results from the Evaluation

VAISAL

Validation of remote sensing methods for ice detection, WindEurope 2016,

Timo Karlsson, Ville Lehtomäki – VTT, Juha Paldanius – Vaisala, Jaakko Kleemola – Suomen Hyötytuuli, Martin S. Grønsleth, Kjeller Vindteknikk, Zouhair Khadiri-Yazami – Fraunhofer IWES

Conclusions

Method Proven for Site Classification

- Robust observation methodology
- Good match with IEA classification

Cloud Information Not Fully Utilized

- Full swept area detection
- Cloud backscatter profile and intensity
- In-cloud visibility

Temperature sensitivity not quantified

- Information source / location
- Alarm threshold

