

Experience with De-icing systems, noise and vibrations evoked by ice accretion

Dr. Daniel Brenner, Daniel.Brenner@Weidmueller.com

Skellefteå, Winterwind conference, 08th Feb 2017

content

- Where does the experience come from?
- De-icing systems
- Noise
- Vibrations

Where does the experience come from?

System facts summary

- Turbines in Monitoring: >1,500*
- Sold Systems, in total: >2,000*
- Monitoring background
 - Over 4,000^{*} machine years of monitoring experience

• Market distribution

- System of choice of all major OEMs and large operators
- Covering a wide variety of turbine and blade types, on- and offshore

BLADEcontrol is the pioneer in rotor blade monitoring

- Ice detector first certified in 2008
- Damage detection first certified in 2013

* as of February 1st, 2017

Weidmüller 🗲 **BLADEcontro** BLADEcontro **Rotor Blade Monitoring System** Hub Measuring Unit Monitoring Center Blade Sensor Durns Dyurna H Evaluation and Communication Unit

Icing conditions on blades

Weidmüller 🔀

Ice rain on whole turbine and blade

Trailing edge icing esp. at serrations

Source: windpowerengineering.com

Effect of icing on natural vibration

Weidmüller 🔀

- All natural oscillations decrease due to ice
 - Blades natural frequencies as well as whole rotor natural frequencies

lcing event with over 250 kg ice per blade

Effect of icing on natural vibration

Weidmüller 🔀

Visualization of ice accretion over time

ice accretion plotted as blue line:

- Icing trend proportional to amount of ice
- Green area means "free of ice"
- Yellow warning
- Red area heavy ice accretion -> usually turbine stop necessary

Weidmüller 🔀

Hot air fan

6 turbines with De-icing equipped with BLADEcontrol lcing duration this season: 140 hours per turbine Heating events this season: > 20 per turbine

conclusion: Hot air fan is a robust system / technique, capable of de-icing

De-icing system: heating mat on leading edge of the outer 2 third of the blade

Recalibration of BLADEcontrol after De-icing system installation necessary

Heating mat separated partly and was deinstalled before winter season

BLADE control damage detection indicator revealed defect at heating mat at blade 2 (blue)

conclusion: Proof of reliability for systems with heating mat on leading edge necessary

Weidmüller 🔀

Tonality – excited by drive train

Influence of icing: Reduction of vibration frequency shifts the tonality problem to a different rotor speed

Icing at trailing edge especially at serrations

Complaints by residents near windfarms about whistling sound

Investigation by technicians on the turbine: very thin icing between teeth of serrations

Source: windpowerengineering.com

For this Incident

Decreasing noise strategy led to whistling sound -> increased noise

Detection of increased Drive Train Torsion

Amplitude of the drive train torsion vibration measured on the blades plotted over wind speed

Reduction of the vibration via controller adaption

Influence of icing: Reduction of vibration may not be adjusted by open-loop controller

Example: Small aerodynamic imbalance excites tower vibration

Only little icing, below 50 % of alarm value

Acceleration sensor in nacelle triggers turbine stop

Hybrid tower

height: 140m 1st natural tower vibration: 0.15 Hz

Rotor speed : 0.15 Hz (9 rpm)

Rotor speed = natural tower vibration + small imbalance -> RESONANCE

Weidmüller 🔀

Summary

- De-icing solutions differ in maturity
- Noise by thin ice between serrations difficult to detect an de-ice
- Natural Vibration frequency changes due to ice accretion -> may lead to resonance
- Aerodynamic imbalance + rotor running with tower vibration frequency causes emergency stops

