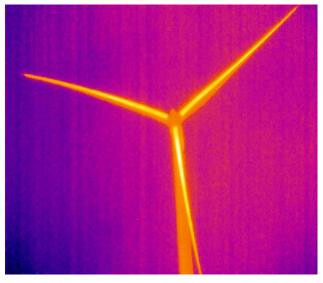
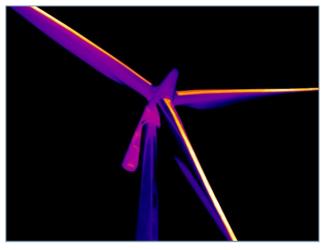


Agenda

- Siemens Wind Power Blade De-Icing
- Experience
- Next Steps & Challenges



Reliable and efficient solution for removing ice


Siemens Wind Power De-icing Strategy

- Ice detected (through power curve deterioration, ice detection sensor or low torque ice detector).
- The turbine is stopped, in static or idle mode.
- De-icing is activated on all three blades.
 (single blade activation is also possible)
- After x min, the nacelle yaws into the wind.
- Once the turbine is producing again, de-icing is deactivated.

Parameters for blade de-icing	
Temperature	+5°C to -15°C
Liquid water content	0 - 60 g/m3
Droplet diameter	0 - 60 μm
Wind Speed	0 - 25 m/s

SWT-2.3-101 de-icing activated

SWT-2.3-101 de-icing activated

Integrated design offers distinct advantages

Designing toward minimum risk...

- Heating elements secured from contamination, loading, loosening, and displacement
- No wiring on the outside of the blade, reducing risk of lightning strikes
- Factory assembled system, increasing reliability while minimizing risk of transport damage

...and optimized performance

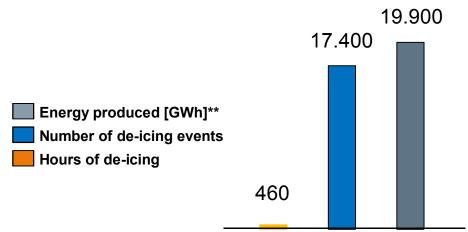
- Heating element adjacent to surface for optimized heat transfer and minimum power losses
- Full retention of the aerodynamic profile
- No effect on noise levels

Blade with mounted carbon layer

Finished blade with de-icing

Agenda

- Siemens Wind Power Blade De-Icing
- Experience
- Next Steps & Challenges



Going from niche to industrialized solutions with high volume, lower cost, and improved quality

Installed and contracted projects*

- Previous platforms: 18 units (1994 -1999)
 Bonus 150kW, Bonus 450kW, Bonus 600kW, Bonus 1MW
- Geared platform: 61 units (2011 2013)SWT-2.3-101
- Direct Drive platform: 227 units (2013 -2015)
 SWT-2.3-113, SWT-3.0-101, SWT-3.0-113, SWT-3.2-113

^{*} Accumulated numbers during winter 2013 and 2014

^{**} Gigawatt-hour

Agenda

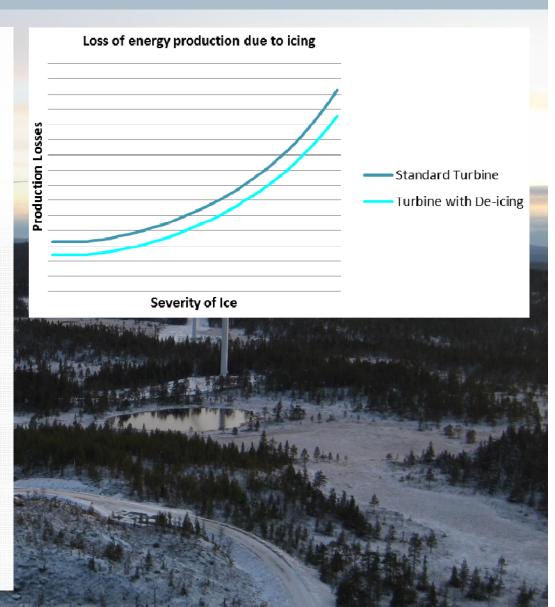
- Siemens Wind Power Blade De-Icing
- Experience
- Next Steps & Challenges

Increasing production and availabilty in icing conditions

Operation with Ice

- Functionality that extends the range of operation in cold climates.
- Finds the optimal operational set-up through pitch angle and speed-power modifications.
- Increases production and availability without compromising operational safety.

How can we increase owner value?


Current owner value of blade de-icing

- Allows operation in harsh climatic conditions
- Increases energy production (reduces losses)
- Decreases repair costs

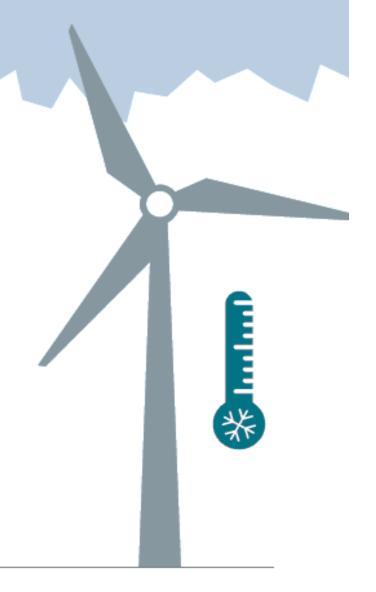
How can we add value?

- Increase knowledge of ice characteristics and behavior
- Standardized methods of describing icing conditions, de-icing systems and de-icing efficiency
- Performance Availability Warranty

Increasing owner's benefit may increase contractor 's risk

Performance Availability Warranty

Present


Warrant the functionality of the de-icing system

Challenges to address:

- Many variables to consider (e.g. wind speed, temperature, air moisture)
- Little knowledge of ice characteristics and behavior
- No standardized way for evaluating icing conditions

Future

Find methods to warrant performance of de-icing system (e.g. in terms of decreased downtime caused by icing, increased energy production or decreased energy loss)

