

ENERGY

DNV GL's empirical icing map of Sweden and methodology for estimating annual icing losses

An update with further Nordic data

Till Beckford 10 February 2016

Contents

- Experience from operational data
- Analysis of pre-construction data
- A long-term adjustment example

Experience from operational data

Ungraded

3 DNV GL © 2016 10 February 2016

Previously at Winterwind...

- Analysed SCADA data from 18 wind farms in the Nordic region
- Strong relationship between elevation and annual icing loss
- A single Swedish climatology observed
- High inter-annual variability

Previously at Winterwind...

- DNV GL Icing map of Sweden
 - Based on empirical data
- Geographical coverage limited by:
 - Data availability
 - Appreciation of other factors driving icing: cloud base height, Arctic weather systems, Gulf stream effects
- Questions:
 - What happens in the north of Sweden?
 - Can maps for Norway and Finland also be derived?

New data analysed in 2015/2016

- Data from 2 new wind farms in Sweden
 - Farm 1:
 - 15+ turbines
 - ~2 years of data
 - Farm 2:
 - 5+ turbines
 - ~1 year of data
- Additional year of data from 1 previously analysed wind farm
- Total of 20 operational wind farms analysed!

Result - Icing loss vs Elevation

Result – Updated Icing Map of Sweden

- Increased geographical spread
 - Extended into Norrbotten
- Updated elevation trend
 - Small changes in predicted annual icing loss

Analysis of pre-construction data

Ungraded

9 DNV GL © 2016 10 February 2016

Previously at Winterwind...

- Analysed data from over 60 masts and 450 sensors
- Linear relationship between anemometer icing and elevation
- Developed a methodology to convert anemometer icing into energy loss

New data 2015/2016

- Added 14 masts
 - 2 in Norway
 - 2 in Finland
 - 10 in Sweden
- Increased geographical spread
 - Northern latitudes better represented

Sensor icing vs elevation

Icing climates – Latitude?

Icing climates – Longitude?

Icing climates

- Different icing zones across the Nordics
- Zones related to longitude
- Elevation the biggest driver within a zone
- What causes the step change between zones?
- Do the same trends exist in energy loss?

Anemometer icing to production loss, methodology recap

Non-linear relationship between anemometer icing and wind turbine energy loss

Energy loss due to icing $= k \times time$ spent iced²

Converting anemometer icing to production loss

A long-term adjustment example

Ungraded

18 DNV GL © 2016 10 February 2016

Long-term adjustment

- Can we explain the deviation from the general trend?
- Only 1 winter of data available
 - Was 2014/2015 representative?
 - Can we adjust the data to be representative of a longer historical period?

- Based on temperature and humidity data from nearby reference stations
 - Uses a matrix methodology
- Comparison of the frequency of icing conditions during the measured period relative to a longer historical period
- Challenging as reference source must be representative!

Example operational site

21 DNV GL © 2016 10 February 2016

DNVGL

Long-term adjustment

- Methodology suggests a significant upwards adjustment
- Magnitude of adjustment is unclear
 - Method considers time iced, not energy loss
- Methodology is qualitative at present
- There may be other factors to consider

Conclusions

New operational data

- Elevation trend
 confirmed non-linear
- DNV GL Icing Map of
 Sweden extended north

Further work...

- More data!
 - Finland

Norway

Ungraded

Pre-construction analysis

- Elevation trend
 confirmed linear
- Identification of climate zones – longitudinal

Further work...

- More data!
 - Finland
 - Norway

Long-term adjustments

- Example of a qualitative adjustment
- Highly dependant of reference data

Further work...

- Long datasets needed
- Refinement of matrix

Many thanks

Visit us at stand 36

Till Beckford Till.Beckford@dnvgl.com +44 (0)2038164223

www.dnvgl.com

SAFER, SMARTER, GREENER