Classification Based Approach for Icing Detection

Z. Khadiri-Yazami, C. Scholz, A. Baier, T. Tang, M. Durstewitz

Fraunhofer IWES, Kassel, Germany

Winterwind international wind energy conference 2016

February 8 10th, Åre, Sweden

Outline

- The approach
- Analysis of icing events
- Input parameter selection
- Classification
 - Result presentation of two selected cases
 - Comparison of two methods
- Conclusions and outlook

Classification based approach

Icing detection

Why icing detection?

Essential issue during site assessment, project development and wind turbine operation

How?

- With instrumentation (directly):
 - Icing can be either detected or measured (thickness or weight)
 - Several ice sensors are available
 - Double anemometry and power curve control can be used
- Without instrumentation by using solely meteorological data (BIG CHALLENGE!)

Classification based approach

Methodology

Classification based approach Methodology

Machine learning procedures for classification

Pattern recognition with artificial neural network (ANN)

Generalized Boosted Machines (GBM)

Analysis of icing events and input parameters

Analysis of all 4 icing phases

- Analysis of all icing events
 - Meteorological Icing
 - Instrumental Icing
 - Incubation period
 - Recovery period

- Analysis of meteorological parameters with respect to each icing phase
 - Reason for start or end of an icing event

Analysis of icing events Background of data (200m Mast)

- Data of 200 m met-mast at an icing relevant site in Germany
- Three winter periods: from 2012 to 2015
- More than 128 icing events and 1200 hours of instrumental icing
- Several meteorological, wind and ice sensors
- Ceilometer and camera
- 10 min. averages

•

•_•

Analysis of icing events and input parameters Analysis of all 4 icing phases – Instrumental icing

Analysis of icing events and input parameters Analysis of all 4 icing phases – Incubation time

Analysis of icing events and input parameters Analysis of all 4 icing phases – Recovery time

Analysis of icing events and input parameters

Selection of Input parameters and case definition

Case 1

	Target /Output									
T(t)	VW(t)	RH(t)	LWC (t)	T(t-3)	LWC (t-3)	T(t-6)	LWC (t- 6)	T(t-7)	LWC(t -7)	"Icing" "no Icing"

Case 2

	Target /Output					
T(t)	VW(t)	RH(t)	T(t-3)	T(t-6)	T(t-7)	"Icing" "no Icing"

T: Temperature – VW: velocity of wind – RH: relative Humidity – LWC: Existence of Liquid water content (yes or no - based on sky condition index from ceilometer measurements)

Case 1(with LWC) – good accuracy of detection

ANN

GBM

Case 1: Post processing – correction of unreasonable values

Case 1 after post processing – very good accuracy

Case 2 (without LWC) – less accuracy than case 1

ANN

Example of one detected icing event

120 21 115 110 19 105 17 100 15 95 90 13 85 11 80 nidity[%] 9 75 70 7 m/s,°C 65 5 60 55 3 ð Relativ 50 YWANAW \mathbf{n} 45 -1 fully heated cup anemometer 40 Unheated anemometer 35 -3 converted RH 30 -5 25 Temp -7 LiquidWaterContent 20 Instrumental Icing Start-End Point 15 0 -9 0 StartPoint Meteorological icing 10 -11 StartPoint RecoveryTime 5 13/11 14/11 15/11 16/11 17/11 18/11 19/11 20/11 Time

I : Instrumental icing – M: Meteorological icing

Conclusions and Outlook

Conclusions

- Promising results of icing detection with the presented approach
- Very good detection with "temperature", "wind speed", "rel. humidity" and "LWC" (after post processing)
- Good detection with "temperature", "wind speed " and "rel. humidity"
- Similar results of ANN and GBM

Outlook

- Method can be used for site specific icing detection
- Test with more data and with data of other location

Thank you for your attention!

IWES

M.Sc. Zouhair Khadiri-Yazami Zouhair.khadiri-yazami@iwes.fraunhofer.de

Fraunhofer Institute for Wind Energy and Energy System Technology IWES Königstor 59, 34119 Kassel, Germany