
Assessment of De-icing and Anti-icing technologies in ice wind tunnel

Nadine Rehfeld; Fraunhofer IFAM Bremen, Germany Prepared for Winterwind 2016, Feb 8 - 10

Content

Introduction: anti-icing / de-icing technologies

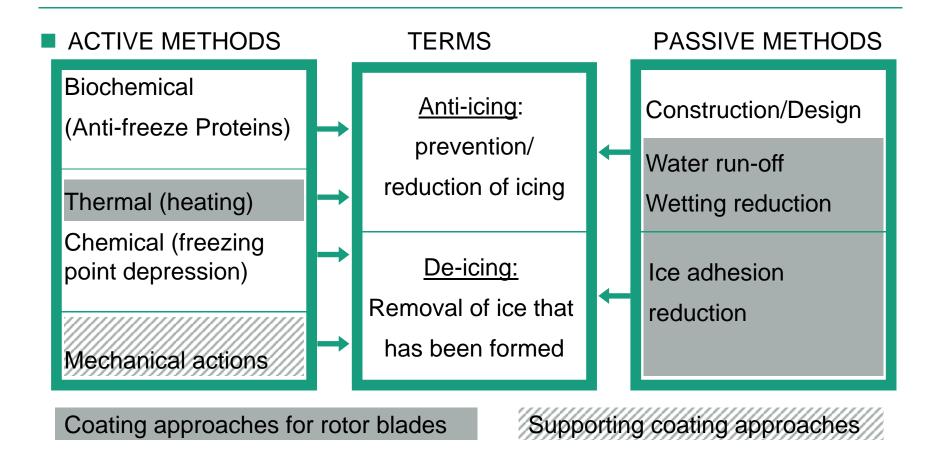
HEATING for anti-icing / de-icing purposes

Electro-thermal heatable coatings

Inductive heating

ICEPHOBIC COATINGS

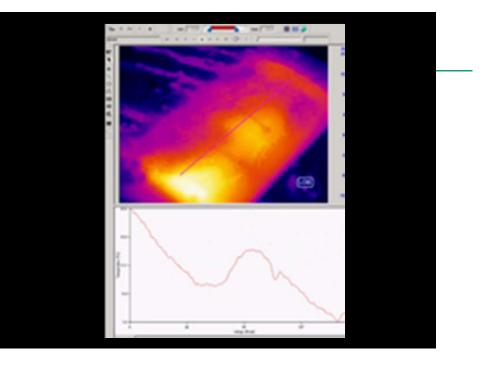
Approaches and challenges


ICE WIND TUNNEL TESTS

Conclusions

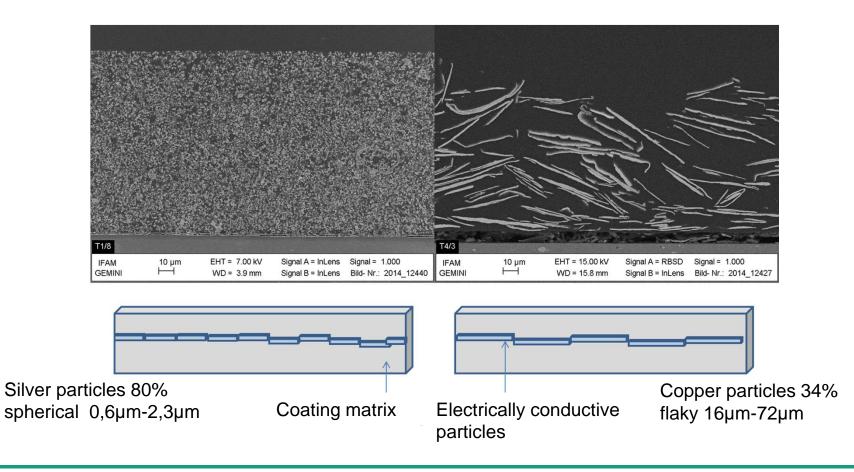
Terms / methods related to icing:

HEATING: Electro-thermal approach


- Technical solutions for rotor blades:
 - Heating of the inner part of the blade by using hot air
 - Use of heating mats / heating foils close to surface
 - Microwave technology, Induction heating
 - HEATABLE COATINGS with following properties
 - Applicable in-mold, spray, retro-fit
 - Application also on curved / complex geometries
 - Repairable
 - Embedding in coating system with close situation to ice-surface interface

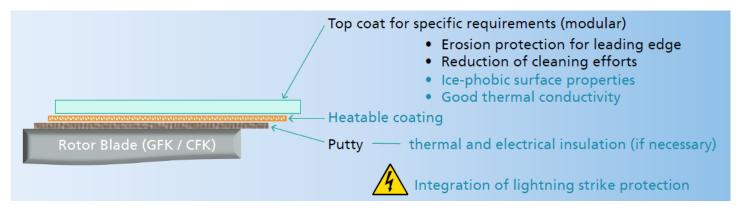
Heatable coatings

Electrically conductive layers as resistance heater:



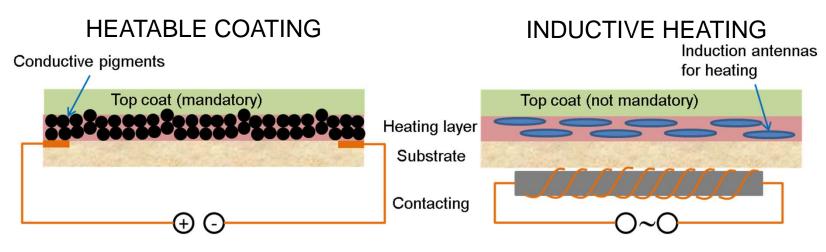
Parameters for layer effectivity:

- Conductivity of pigments (building an electrically conductive network within the coating)
- Pigment / Binder ratio (percolation threshold)
- Pigment shape (aspect ratio) and orientation in coating matrix


Heatable coatings

Heatable coatings - concept

Concept for integration of heating layer to fulfil technical requirements:



- Material and concept development ongoing at Fraunhofer IFAM, linked to comprehensive testing in ice wind tunnel
- Integration of ice protection system with ice sensors and control systems necessary for improved energy efficiency / Integration of ice protection system in wind turbine – open tasks for development partners

Inductive heating - concept

Heating concept using electromagnetic induction

- Main advantages:
 - Electrical connection in coating layers not necessary
 - Lightning strike problems significantly reduced
- Main challenge:
 - Development status clearly lower compared to heatable coatings

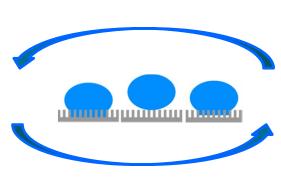
Icephobic coatings How can a coating act?

Influencing parameters for ice formation:

- ✓ Surface temperature
- Surface chemistry
- Surface topography
- Surface physics

Mode of action for icephobic coatings:

- Minimization of wetting
- Acceleration of water run-off
- Reduction of ice adhesion

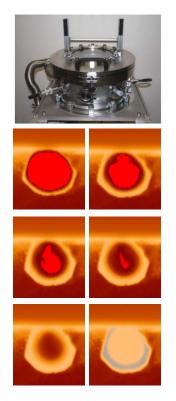

Icephobic coatings

Combination of electro-thermal method with icephobic surfaces

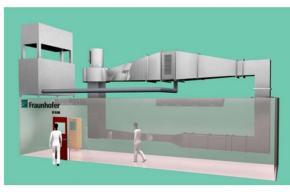
 \rightarrow significant reduction in energy consumption proven (in lab-scale)

Influencing parameters for ice formation:

<u>Chemical-based</u>: minimization of bonding options between water molecules and coating surface; Preferably NO electrostatic interactions, hydrogen bonding, and van-der-Waals interactions

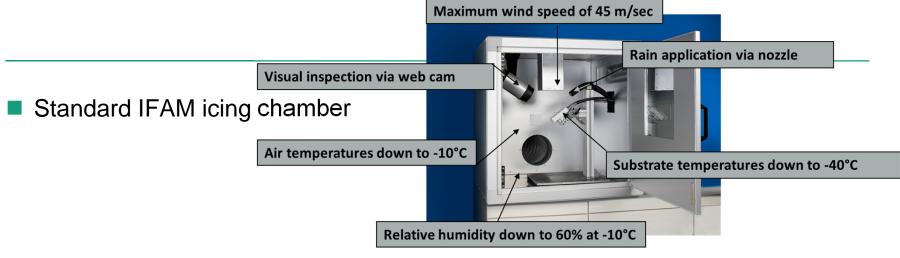

Physical-based:

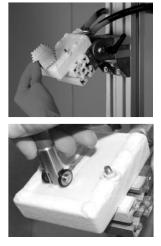
micro- and nanoscale surface topography with significant effects on wetting and ice adhesion; preferably Cassie-Baxter (droplet with minimum contact to surface)

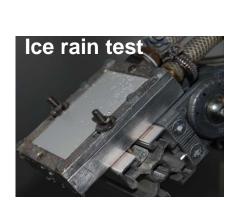


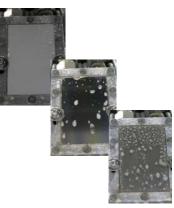
Assessment of icing processes and anti-icing / de-icing technologies

from microscopic view, lab simulation tests to field tests






Ice-related tests

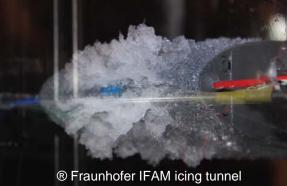


Simulates formation and adhesion of rime

Simulates water run-off and subsequent formation of clear ice

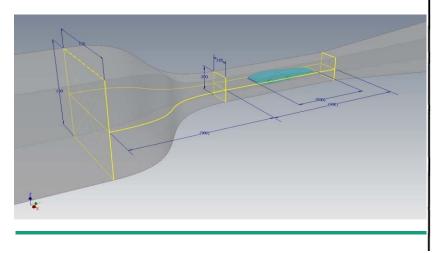
Icephobic coatings

One Example:


Parameter	Unmodified PUR	F-modified PUR coating		
Water contact angle [°] Roughness Ra [µm]	82 0.17 (±0.01)	124 0.64 (±0.07)		
Ice formation at -5°C in IFAM ice rain test				
Ice adhesion	Significant ice adhesion reduction			
Limitation	Rime ice accretion is not prevented			

Ice-related tests

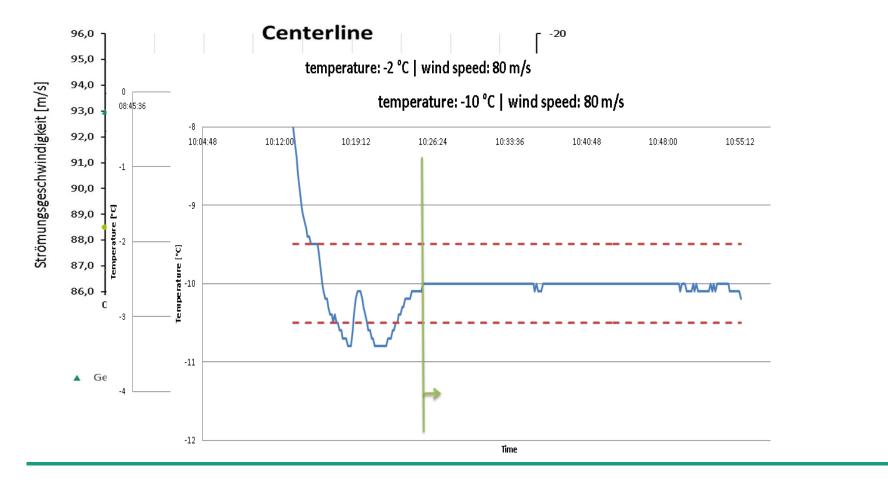
- ICE/lab with integrated ice wind tunnel for simulation of icing conditions relevant for many technical applications:
 - temperature down to -30°C
 - wind speed of up to 350km/h,
 - water droplets (incl. supercooled)



Ice wind tunnel tests

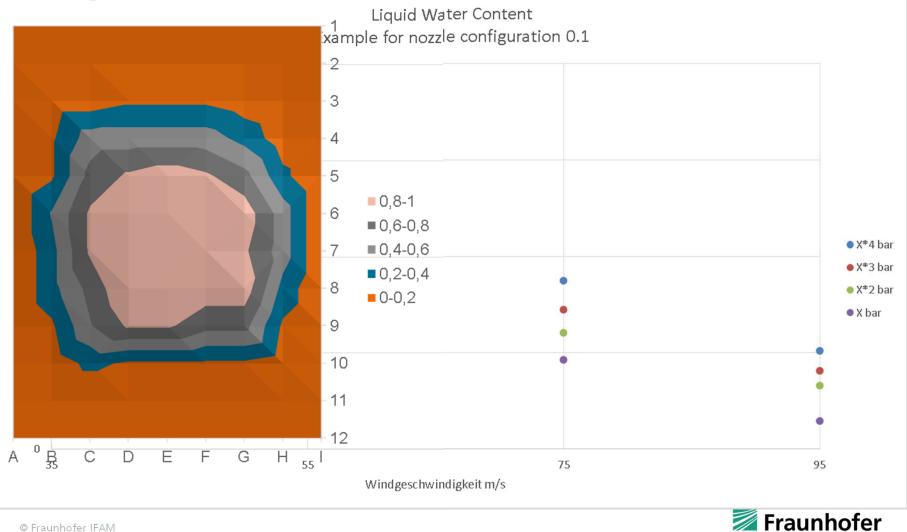
SAE ARP5905

5. FACILITY PERFORMANCE TARGETS:


Icing testing should be performed in facilities having measured, defined, and documented aero-thermodynamic flow qualities, icing cloud qualities, and calibrated instrumentation. The facility should be calibrated in accordance with the time frames in Section 7 and the procedures in Section 8. The test section airflow and icing cloud characteristics should be within the range of performance targets listed in Table 1 over the area of the uniform icing cloud is defined as the area of the test section over which the LWC does not vary by more than ±20% from the test section centerline LWC value for a given airspeed and water droplet size.

	Measurement Instrumentation Maximum Uncertainty ²	Tunnel Centerline Temporal Stability ³	Spatial Uniformity⁴	Limit Value⁵
	Aerodynami	c Parameters		
Airspeed	±1%	±2%	±2%	N/A
Static Air Temperature below -30 °C	±2 °C	±2 °C	±2 °C	N/A
Static Air Temperature between -30 and +5 °C	±0.5 °C	±0.5 °C	±1 °C	N/A
Flow Angularity	±0.25°	N/A	±2°	±3°
	Flow Tu	Irbulence		
(Pa-Off) ⁶	±0.25%	±2%	<2%	2% ⁸
(Pa-On) ⁷	±0.25%	±2%	<2%	5% ⁸
Pressure Altitude	±50 m	±50 m	N/A	N/A
	Cloud Uniform	nity Parameters	I	
Liquid Water Content	±10%	±20%	±20%	N/A
Median Volume Diameter ⁹	±10%	±10%	N/A	N/A
Relative Humidity	±3%	N/A	N/A	N/A

TABLE 1 - Test Section Performance Targets¹



Ice wind tunnel tests Step 1: test section characterization

Ice wind tunnel tests Step 1: test section characterization

IFAM

Ice wind tunnel test results

Formation of ice at leading edges, equipped with heating devices and covered with different coatings

JEDI ACE

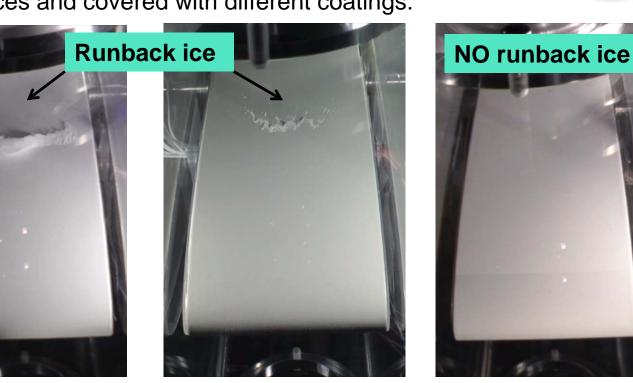
ICE PROTECTIO TECHNOLOGIES FOR AIRCRAFT

Ice wind tunnel test results

Kanagawa Institute of Technology, Japan

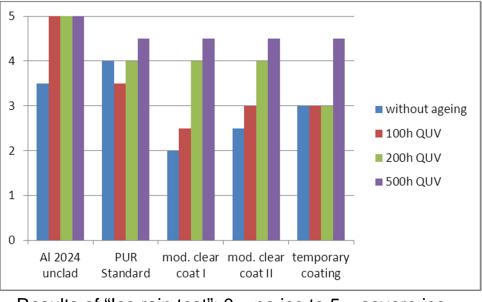
JEDI ACE

ICE PROTECTIO TECHNOLOGIES


KAIT

Formation of runback ice on mock-ups, equipped with heating devices and covered with different coatings:

PUR benchmark coating


Superhydrophobic anti-icing coating

Icephobic coatings Challenges

- Selection of icephobic coatings depending on icing process
- Many hydrophobic coatings available on the market Limitations:
 - Hydrophobicity is not necessarily associated with anti-icing properties!
- Current challenges:
 - Multi-functional properties of top coat
 - Selection of additives that are not banned due to HSE-reasons
 - Improvement of long-term performance →

Results of "Ice rain test": 0 - no ice to 5 - severe ice

Conclusions

- Different promising technologies for cold climate wind turbines are available / under development
- There are still various opportunities to further improve available technologies
- Heatable coatings are one option for advanced systems
- Icephobic surfaces are an interesting option to significantly reduce energy consumption
- Coating selection needs to address icing scenarios as efficiency of icephobic or superhydrophobic coatings differs significantly depending on icing process
- Interdisciplinary concepts need to be developed for integration in wind turbine technique / systems

Many thanks for your attention!

Fraunhofer-Institut für Fertigungstechnik und Angewandte Materialforschung IFAM Klebtechnik und Oberflächen Abteilung Lacktechnik Nadine Rehfeld Wienerstraße 12 28359 Bremen

Tel: +49 421 2246-432 Fax: +49 421 2246-430 Email: <u>Nadine.Rehfeld@ifam.fraunhofer.de</u>

