

A Generic Model for Ice Growth and Ice Decrease Process

Winterwind 2015 Saara Kaija, Jeroen Dillingh VTT Technical Research Centre of Finland

Contents

- Typical Icing Event and Motivation
- Model Description
- Validation of Model Elements
- Case Study with NREL 5MW Reference Turbine
- VTT Icing Wind Tunnel Experiments
- Future work

Icing Event and Motivation

- Icing forecasts generally estimate the time periods of ice growth but not ice loss
 - Increases the uncertainty of the production estimates
- In resource assessment phase we can consider the icing intensity and the ice loads in addition to the iced up time

Model Description

- Ice Growth
 - Ice thickness growth rate
 - Ice mass growth rate

- Ice Sublimation
 - Ice thickness decrease rate
 - Ice mass loss rate

Net Ice Thickness Growth Rate [mm/hr]

Net Ice Mass Increase Rate [kg/hr]

Leading Edge Approximation

- Turbine blade leading edge approximated by a cylinder
 - Limitation to the ice type due to the icing limits

 The whole blade discretized into blade segments with a constant leading edge radius

Sublimation of Ice on a 2D Cylinder

- Based on the steady-state heat balance equation integrated over the cylinder covered with ice
- Numerical analysis used to determine the surface temperature and the mass of sublimating ice per unit time
- The required input for the sublimation rate [mm/hr]:
 - Relative humidity
 - Air temperature
 - Air pressure
 - Relative wind speed
 - Nose radius and the length of the blade segments

Model Validation for Ice Loss Rate

- $R_c = 6.3$ mm, l = 25.4 mm, MVD = 20 µm, LWC = 0
- Assumes cloud free air and smooth cylinder surface (ice roughness neglected)

Winterwind 2015: A Generic Model for Ice Growth and Ice Decrease Process 4.2.2015 Piteå, Sweden

Model Validation for Ice Loss Rate

- $R_c = 6.3$ mm, l = 25.4 mm, MVD = 20 µm, LWC = 0
- Assumes cloud free air and smooth cylinder surface (ice roughness neglected)

^{4.2.2015} Piteå, Sweden

Ice Thickness Decrease Rate and Cylinder Diameter Effect

Ice Growth on a 2D Cylinder

- Simplified ice growth model as compared to comprehensive ice accretion models such as TURBICE
 - Simple and fast, yet accurate for cylinder approximation
- Ludlam limit as a key parameter for determining the ice type and thus the freezing fraction calculation method
- The required input for the ice growth rate [mm/hr]:
 - Relative humidity
 - Air temperature
 - Relative wind speed
 - Liquid water content
 - Median volume droplet size
 - Nose radius and the length of the blade segments

Model Validation for Ice Growth Rate

- Growth rates averaged over a cylinder
- F = 1 for these calculations, thus comparison is valid for rime ice cases only

Case Study – NREL 5MW Reference Turbine

- 15 blade segments approximated by LE cylinder
- Wind speed 10 m/s, corresponding rotor speed 11.4 RPM
- Ice roughness taken into account

Case Study – NREL 5MW Reference Turbine

LWC = 0. 2 g/m³, *RH* = 97%, $T_a = -2^{\circ}$ C, *MVD* = 20µm, $P_a = 100$ mbar

Case Study – NREL 5MW Reference Turbine

LWC = 0. 2 g/m³, *RH* = 97%, $T_a = -10^{\circ}C$, *MVD* = 20µm, $P_a = 100$ mbar

VTT Icing Wind Tunnel Experiments

Future work

- Analysing the data from the wind tunnel experiments
- Continue validation
- Include wind erosion and melting models
- Power loss estimation

溸.

Thank you!

Questions?

TECHNOLOGY FOR BUSINESS

<u>.</u>

 $\sqrt{2}$