DNV·GL

Validation of New Model for Short-term Forecasting of Turbine Icing

Using SCADA data from Scandinavian wind farms

Beatrice Brailey Winterwind 2015

Contents

- Background
- Methods
- Validation data
- Results
- Value to forecast users
- Conclusions

Background – Icing losses

- Icing losses in Scandinavia are variable and can be highly significant
 - Annual energy production losses from ${\sim}0\%$ up to ${>}10\%$
 - Monthly energy production losses from 1% up to >50%

(Staffan Lindahl: Quantification of energy losses cause by blade icing using SCADA data, Winterwind 2014)

Individual icing events can lead to full loss of power

Background – Short-term forecasting

- The value of short-term forecasting is well understood
- State of the art forecasts are typically high accuracy
 - \rightarrow Beneficial to model blade icing when forecasting for wind farms in cold climates
- Icing prediction is woefully unvalidated
 - Reliable observation data is scarce

Methods – base forecast

Methods – icing model

Methods – icing model power conversion

Validation Data

- 3 wind farms, ~40 wind turbines
- Projects in Region 2 and Region 3, where there is sufficient icing to test model
- For each site:
 - ~ 1 year of data for model training
 - ~ 1 year of data for validation
- For all projects the turbines remain operational during blade icing periods

- Icing modelling → improved forecast accuracy
 - \rightarrow Increase energy revenue (based on day ahead energy trading in UK)
 - \rightarrow Operational planning
 - \rightarrow Grid management

Forecast scenario	Average trading revenue (€/MWh)	MAE
No forecast	56.3	-
Basic forecast	57.7	22%
State of the art	61.6	12%
Perfect	64.6	0%

Based on day ahead energy trading in the UK

Parkes et al. Wind Energy Trading Benefits Through Short Term Forecasting, EWEC 2006

Value to forecast users – an advanced warning system

Conclusions

- Validation shows icing model adds value to forecasts
 - Model is relevant to Scandinavian climate
 - Successful in varying levels of icing
 - Reduces MAE by up to 0.95% capacity (average improvement = 0.6%)
- Ice accretion \rightarrow ice load \rightarrow power is well modelled
- Scope for model improvement
 - Meteorological conditions \rightarrow icing \rightarrow freezing time
 - Thawing/ice throw
 - Upper limit for ice load
- Forecast accuracy improvement = increased revenue, informed operations, improved grid management

Questions?

Beatrice Brailey Beatrice.Brailey@dnvgl.com +44 (0) 117 972 9900

www.dnvgl.com

SAFER, SMARTER, GREENER