

Mehr Sicherheit. Mehr Wert.

Assessment of the ice throw and ice fall risks nearby wind energy installations

Michaela Kaposvari, Thorsten Weidl

TÜV SÜD Industrie Service GmbH, Winterwind, February 4th, 2015

Cor

Simulation

nsequence

Frequency

Wind energy is the leading source of renewable energy in Germany, moving towards a nuclear-free and carbon-free generation profile.

Building new wind farms is connected with a complex approval procedure

Risk

onsequence

Frequency

Risk

Wind energy is the leading source of renewable energy in Germany, moving towards a nuclear-free and carbon-free generation profile.

and ice fall near the wind turbines

TÜV SÜD Industrie Service GmbH

04.02.2015

Winterwind, Piteå, February 4th, 2015

Folie 3

עיזע

Ice throw and ice fall in the German approval process:

Simulation

- Wind turbines in Germany are not allowed to operate during ice formation!
 - installation of a functional ice detection system
 - subsequent shut-down of the turbine

Initial Situation

have to be

confirmed

Ice throw and ice fall in the German approval process:

Simulation

• Wind turbines in Germany are not allowed to operate during ice formation!

Consequence

- installation of a functional ice detection system
- subsequent shut-down of the turbine
- Residual risk of ice fall from stopped wind turbines

Initial Situation

has to be investigated for roads, paths or other objects of interest within the range of **1.5 x (rotor diameter + hub height)**

(German Guideline – Richtlinie für Windenergieanlagen, Liste der Technischen Baubestimmungen)

TÜV SÜD Industrie Service GmbH

Frequency

עטד

Folie 6

Ice Fall Simulation (2/7)

Content	Initial Situation	Simulation	Consequence	Frequency	Risk	
Ice prope	rties		Scenario A:	rime ice	with a mas	ss of 90 g
			Scenario B:	rime ice	with a mas	ss of 240 g
			Scenario C:	clear ice	e with a ma	ss of 70 g
4 scenarios of ice fragments			Scenario D:	clear ice	e with a ma	ss of 180 g
were identif	fied, based on	l				

- the characteristic ice formation processes
- with assumed proportions

Ice Fall Simulation (2/7)

- the characteristic ice formation processes
- with assumed proportions
- the expected extent of damage of accelerating ice pieces falling from a WTG to the ground

Ice Fall Simulation (3/7)

Extent of damage - related to a height of 140 m (a typical hub height) and to the masses and density of the ice pieces

TÜV SÜD Industrie Service GmbH 04.02.2015

Winterwind, Piteå, February 4th, 2015

TUV®

Ice Fall Simulation (3/7)

Extent of damage – related to a height of 140 m (a typical hub height) and to the masses and density of the ice pieces

TÜV SÜD Industrie Service GmbH

Winterwind, Piteå, February 4th, 2015

Ice Fall Simulation (4/7)

Input parameters:

- Hub height
- Rotor diameter
- Rotor revolution
- Wind properties
- Ice fragment properties

calculation of the x, y and z acceleration using the equation system of motion

Ice Fall Simulation (5/7)

Ice Fall Simulation (5/7)

are randomly chosen

TÜV SÜD Industrie Service GmbH

04.02.2015

Winterwind, Piteå, February 4th, 2015

of the ice fragment on the rotor blade

Folie 13

עטע

Ice Fall Simulation (6/7)

04.02.2015

TÜV SÜD Industrie Service GmbH

Consequence

Frequency

Results of the simulation:

theoretically affected area by ice fall

Example for a WTG with 141 m hub height 117 m rotor diameter

Colouring: total amount of hits per cell

Grid: areas of 5 m x 5 m Range rings: rotor radius, 100 m, 200 m

Winterwind, Piteå, February 4th, 2015

Ice Fall Simulation (7/7)

Frequency

Results of the simulation:

theoretically affected area by ice fall

Risk

transferred to a topographical map *(example Scenario A)*

Are roads, footpaths or other objects of interest affected?

Is a risk analysis necessary?

TÜV SÜD Industrie Service GmbH

04.02.2015

<u>Risk</u> is defined as

the product of the **<u>consequence of an event</u>** with its **<u>frequency</u>**:

TÜV SÜD Industrie Service GmbH

04.02.2015

Winterwind, Piteå, February 4th, 2015

עטד

For determining the <u>extent of damage</u>, the so-called <u>probit function</u> is used.

Consequence

Simulation

The probit function is defined by

Initial Situation

 $\Pr = -17.56 + 5.3 \cdot \ln S$

with
$$S = \frac{1}{2}mv^2$$
 a

as the kinetic energy of the ice fragment

Risk

Frequency

עטד

Initial Situation

The resulting Extent of Damage (EoD) can be estimated from the following table:

The value of the probit function defines the first and the second digit of the value of the extent of damage.

Simulation

in this example: 0.84 (84%)

Risk

%	0.00	1.00	2.00	3.00	4.00	5.00	6.00	7.00	8.00	9.00
0	-	2.67	2.95	3.12	3 <mark>2</mark> 5	3.36	3.45	3.52	3.59	3.66
10	3.72	3.77	3.82	3.90	3 <mark>92</mark>	3.96	4.01	4.05	4.08	4.12
20	4.16	4.19	4.23	4.26	4 <mark>29</mark>	4.33	4.36	4.39	4.42	4.45
30	4.48	4.50	4.53	4.56	4 <mark>5</mark> 9	4.61	4.64	4.67	4.69	4.72
40	4.75	4.77	4.80	4.82	4 <mark>85</mark>	4.87	4.90	4.92	4.95	4.97
50	5.00	5.03	5.05	5.08	5 <mark>1</mark> 0	5.13	5.15	5.18	5.20	5.23
60	5.25	5.28	5.31	5.33	5 <mark>3</mark> 6	5.39	5.41	5.44	5.47	5.50
70	5.52	5.55	5.58	5.61	5 <mark>6</mark> 4	5.67	5.71	5.74	5.77	5.81
80 🗲	5.64	5.88	5.92	5.95	5.99	6.04	6.08	6.13	6.18	6.23
90	6.28	6.34	6.41	6.48	6.55	6.64	6.75	6.88	7.05	7.33
-	0.00	0.10	0.30	0.30	0.40	0.50	0.60	0.70	0.80	0.90
99	7.33	7.37	7.41	7.46	7.51	7.58	7.65	7.75	7.88	8.09

Consequence

TÜV SÜD Industrie Service GmbH

Frequency

Determining the Frequency (1/3)

Frequency of ice fall events

- estimation based on the WECO project (Wind Energy Production in Cold Climate)
- > observation of a WTG, counting ice pieces around the test site in Switzerland
- > 200 ice falls over 3 winters were detected

As it is expectable that not all the pieces were found, **<u>200 ice fall events per year</u>** are assumed in the risk assessment.

(a more site-specific improvement is planned)

Determining the Frequency (2/3)

TÜV SÜD Industrie Service GmbH

04.02.2015

Winterwind, Piteå, February 4th, 2015

Folie 21

עטד

Determining the Frequeny (3/3)

Content	Initial Situation	Simulation	Consequence	Frequency	Risk	
Utilization	Categories					
	<u>outogonico</u>		Category	Meaning		
Calcuation valu used for days w	es for the frequency vith ice fall conditions	10	Regularly used	This way is – due to its siz to villages and towns – as means, it has to be assum and the same jogger or pe ice fall conditions.	e, its accessibility and its position sumed to be used regularly. This led that this way is used by one destrian at each day we assume	
		3.16	Often used	For this kind of way not all of the attributes above are applicable. So leads e.g. a higher distance to villages or a worse accessibility to the assumption that this way is not used at each day by joggers or pedestrians.		
		1	Sporadically used	These are ways, which ca from the aerial view, but w main ways and which con- it is used sporadic.	n be clearly identified as ways hich are definitely not used as a ditions allows the conclusion that	
		0.316	Rarely used	These are ways, which can be identified as ways from the aerial view and which conditions allows the conclusion that it is used sporadic.		
		0.1	Usually not used	Ways which can be rarely identified as such from the aeria view, which are a lot of kilometres away from the next buildings or which are identified as blind alleys are seen a usually not used.		

TÜV®

Risk assessment

Initial Situation

Simulation Cons

Consequence

ce Frequency

SUD

Calculation of the risk for each scenario using the previous parameters

As we don't know exactly the mass distribution and the fraction of rime and clear ice,

we assume each scenario has the same probability:

$$R = 0.25 \cdot \sum_{i=AtoD} C_{Szenarioi} \cdot P_{Szenarioi}$$

 $R_{scenarioi} = C_{scenarioi} \cdot P_{scenarioi}$

Risk

Risk assessment

Initial Situation

Simulation

Consequence

Frequency

Risk $R_{scenarioi} = C_{scenarioi} \cdot P_{scenarioi}$

Calculation of the risk for each scenario using the previous parameters

As we don't know exactly the mass distribution and the fraction of rime and clear ice,

we assume each scenario has the same probability:

This risk is calculated for each grid cell.

sum of the risks for all grid cells, **Final risk** which are crossed by a pedestrian or a driver.

TÜV SÜD Industrie Service GmbH

04.02.2015

Winterwind, Piteå, February 4th, 2015

Folie 24

TUN

 $R = 0.25 \cdot \sum C_{Szenarioi} \cdot P_{Szenarioi}$

Risk assessment – practical interpretation (1/2)

Risk **Initial Situation** Simulation Consequence Frequency The risk results are transferred to a topographical map, similar to the ice fall simulation results. Colouring: risk crossing a grid cell

Content

 Risk assessment – practical interpretation (1/2)

 Content
 Initial Situation

 Simulation
 Consequence

 Frequency

 The risk results are transferred to a topographical map, similar to the ice fall simulation results.

Are sanctions necessary?

Risk assessment – practical interpretation (2/2)

Content	Initial Situation	Simulation	Consequence	Frequency	Risk	
Useful for comparison:		Cause of Death / Industry Sector			Frequency (as 1 in 'X')	Frequency (as 1x10 ^x)
		Death from smoking	Death from smoking 20 cigarettes/day			5x10 ⁻³
		Deaths from regular	recreational rock climbing		1 in 250	4x10 ⁻³
Reference v	alues for risk	The HSE lower leve	I of tolerable risk to workers		1 in 1,000	1x10 ⁻³
		Drinking 1 bottle of	1 in 1300	7.5x10 ⁻⁴		
		The HSE lower leve	I of tolerable risk to population	n at large	1 in 10,000	1x10 ⁻⁴
		Death in off-shore o	il & gas industry		1 in 14,564	
		Death from all forms	s of road accident		1 in 16,800	
		Deaths - Working in	n the construction industry (UI	K)	1 in 17,000	
		Dutch criteria for mi	nimum individual risk in existi	ng establishments	1 in 100,000	1x10 ⁻⁵
		Death by murder in	UK		1 in 100,000	1x10 ⁻⁵
		Deaths in the "servi	ce industries"		1 in 333,000	
		Dutch criteria for 10	fatality incident		1 in 1,000,000	1x10 ⁻⁶
		The UK HSE "Broad	dly Acceptable" level of risk			
		Risk of electrocution	n in the home			
		Death - Gas inciden	t (fire, explosion or carbon mo	onoxide poisoning)	1 in 1,510,000	
		Dutch Criteria for 10	00 fatality incident		1 in 10,000,000	1x10 ⁻⁷
		Winning 6 numbers	in the National Lottery		1 in 14,000,000	
		Risk at 500m from	death by toxic cloud at Bat	1 in 16,000,000		
		Being struck by light	1 in 18,700,000			
TUV SUD Industrie Se	rvice GmbH	04.02.2015	Winterwind, P	iteå, February 4 th , 20	15	Folie 27

Contact details

Industrie Service

Choose certainty. Add value.

Thank you for your attention!

If you have any further question, don't hesitate to contact us:

TÜV SÜD Industrie Service GmbHDepartment Wind Cert Services / Site AssessmentLudwig-Eckert-Str. 8D-93049 RegensburgMichaela KaposvariPhone+49 941 460212-15E-mailmichaela.kaposvari@tuev-sued.de

TÜV SÜD Industrie Service GmbHDepartment Risk ManagementWestendstraße 199D-80686 MünchenThorsten WeidlPhone+49 89 5791-2701E-mailthorsten.weidl@tuev-sued.de

