Influence of ice accretion on the noise generated by an airfoil section R.Z. SZASZ, M.RONNFORS, J.REVSTEDT, LUND UNIVERSITY,

WINTERWIND 2015

Wind Turbine Icing Research

- Where?
 - Icing maps
- Ice prevention
 - passive
 - active
- Detection and measurement

• How does the ice accrete?

• Measurements

Computations

Modeling Ice Accretion

Strategies

- Icing types
 - Glaze
 - Rime
- Makkonen [Makkonen1985]

 $\frac{dM}{dt} = \alpha_1 \alpha_2 \alpha_3 \phi u A$

 $\alpha_i - collision/sticking/accretion efficiency$

INTERNATIONAL WIND ENERGY CONFERENCE

Goals

$$\frac{dM}{dt} = \alpha_1 \alpha_2 \alpha_3 \phi u A$$

- Develop tool to model simultaneously flow and ice accretion
 - Efficient (relative)
 - Flexible
 - » Avoid/fewer model coefficients
 - » Complex/moving geometries
 - Combine with other modules
 - » Performance
 - » Noise

INTERNATIONAL WIND ENERGY CONFERENCE

UNIVERSITY

Flow

- Incompressible Navier Stokes
- Finite Differences (3rd, 4th)
- LES (implicit)
- Equidistant Cartesian grid
- Immersed Boundary

Droplet transport

- Lagrangian Particle Tracking
- Typically low LWC
 - Only drag force
 - No collision
 - No break-up
- Release: rectangular area, random distribution
- Removal: accretion or max streamwise position
- Impact parameters loggedvinterwine

Ice Accretion

- All droplets impacting on the surface freeze instantaneously
 - Rime-ice conditions
 - For other conditions heat transfer must be included
- Distance from distance function used for IBM
 - Efficient but slightly lower accuracy
- Critical distance

$$-d_{cr}=f\Delta$$

Changing the surface shape

- CFD: N,x,y,z,d,m
- every Nth timestep
 - Can be extrapolated in time: m_{ice}=m_{ice}*C_{time}

Changing the surface shape

- CFD: N,x,y,z,d,m
- every Nth timestep
 - Can be extrapolated in time: m_{ice}=m_{ice}*C_{time}
 - Trapped air can be accounted for here
- Filtering

Changing the surface shape

 $\overrightarrow{Di} \approx V_{ice_i} / A_{dualcell}$

- CFD: N,x,y,z,d,m
- every Nth timestep
 - Can be extrapolated in time: $V_{ice} = V_{ice} * C_{time}$
 - Trapped air can be accounted for here
- Filtering
- Iterative algorithm
 - Towards outer normal
 - Assure added V_{ice}
 - Only a few iterations needed erwin

Noise computations

- Hybrid-method (Lighthill)
- $\frac{1}{c^2} \frac{\partial p'^2}{\partial t^2} \nabla^2 p' =$ Advantages
 - navantages
 - Dedicated solvers for flow & acoustics

 $\partial x_i \partial x_j$

- Acoustic sources can be iterated
- Possibility of different
 - » Mesh

» Computed physical time R.Z.Szasz et al. Lund University, Winterwind 2015

Case set-up

• 'In-fog icing event 2' [Hochart2008]

Parameter	Value
Profile	NACA 63415
Angle of attack	3
LWC	0.37g/m ³
MVD	27.6 μm
Vrel	18.7 m/s
Re	2.49e5
Time	10.6 min
Mass of accreted ice	24±1.75 g

Ice distribution

Winterwind

INTERNATIONAL WIND ENERGY CONFERENCE

Average velocity

Winterwind

INTERNATIONAL WIND ENERGY CONFERENCE

RMS velocity

Vortical structures ($\lambda 2$)

RMS Lighthill source

Lund

UNIVERSITY

Acoustic sources

- Isosurfaces of ca 25% max rms
- No significant effect on downstream extent

Log10 RMS Acoustic Density Fluctuation

Acoustic presssure spectra

Filtered acoustic presssure spectra

Acoustic presssure spectra

Filtered acoustic presssure spectra

Future work

- Other icing conditions
 - Add heat transfer
- Acoustics
 - Account for monopoles and dipoles as well

INTERNATIONAL WIND ENERGY CONFERENCE

- Improve efficiency
 - Oct-tree mesh
 - Implement method in OpenFOAM
- Landscape/ground effects
- Realistic geometry

Acknowledgements

- Financing: STEM Kallt klimat: *Wind Turbines in Cold Climate: Fluid Mechanics, Ice Accretion and Terrain Effects*
- Computing resources: SNIC/Lunarc (Lund Univ.)

Thank you!

