

Performance assessment of ice protection systems for wind turbines

Winterwind 2015, Piteå Esa Peltola VTT Technical Research Centre of Finland

Contents

- Introduction
- Wind turbine ice protection markets
- Approaches to blade ice protection
- Ice protection performance assessment
- Conclusion

VTT Services for stakeholders in the whole wind power value chain

VTT in wind turbine ice protection

Need for ice protection

- Wind turbine investments
 - IEA IceClass 3-5: 8 GW in 2013-17
 - IEA IceClass 1-2: 20 GW
 - in 2013-17 [1]
- Significant financial losses due to icing, in existing fleet
 - estimated value in Canada only is 200 M\$/a [2]

IEA Ice class	Meteorological icing	Instrumental icing	Production loss
	% of year	% of year	% of annual production
5	>10	>20	> 20
4	5-10	10-30	10-25
3	3-5	6-15	3-12
2	0.5-3	1-9	0.5-5
1	0-0.5	<1.5	0 - 0.5

Capacity in CC (up to end 2012) and forecasted (2013-2017) in MW View of World

[1]: Navigant Research, 2013. World Market Update 2012, Chicago. Illinois: Navigant Research, ISBN: 978-87-994438-4-0
[2]: Wadham-Cagnon et al, 2014. Smartly Investing In Ice Protection

Systems To Effectively Reduce Financial Loss. In Wind Power Monthly forum Optimising Wind Farms in Cold Climate, Helsinki Nov 26-27 2014

Different ice protection principles and approaches

Ice protection performance assessment relevance

8

Production loss assessment - modeling based, SCADA based

Ice protection of blades

- Maintain wind turbine performance in icing conditions
 - Reduce aerodynamic penalty (loss of AEP)
 - Avoid forced stops (loss of AEP)
 - Avoid adverse turbine loading (loss of lifetime)
 - Reduce risk of ice throw (loss of acceptance)

Business case for ice protection – pre-design

Turbine data Site and meteorological data Turbine power curve • Turbine operation Wind conditions Calculated power curves Blade data Icing conditions Site data Power Ice prevention **Options comparison** (relative) design Performance recovery • Own consumption 25 10 15 20 30 Options m/s Value Limitations Cost and complexity Main design parameters Light icing — Moderate icing

Recommendations

- Design
- Next steps

Ice protection design requirements

- May include e.g.
 - Design for an IEA Ice Class or equivalent requirement
 - Operational in specified condition envelope
 - Mechanical endurance and lifetime like extreme, fatigue and transport accelerations, as well as vibration and dynamics requirements
 - Certification requirements e.g. lightning
 - Electrical design supply voltage, power available, etc
 - Electrical protection overvoltages, personnel, lightning

Power performance of wind turbine in icing conditions – design

Design verification in an icing wind tunnel

To verify anti- or de-icing functionality and design limits

- Electrothermal heating, hot-air system, coating, combination
- Not a system level assessment, scale model
- Controlled conditions
- Relatively cheap and fast

Icing wind tunnel layout, side view.

12/02/2015

Power performance of wind turbine with ice protection – "type certification"

Example: Assessing system performance and financial benefits

Example: Assessing system performance and financial benefits

Windpower Monthly forum: Optimising wind farms in cold climates Helsinki 26-27.11.2014

Production forecasting

Ice protection performance assessment

- To reduce financial risks
 - Pre-design to support business case
 - Design to compare alternative aproaches and optimize design
 - Design verification
 - System performance for financing and risk assessment
 - System performance for production forecasting

- Standards/practices to assess ice protection performance missing
 - Power performance curve for T<0, icing and both
 - Design and verification conditions
 - Need and scope for R&D cooperation
 - Activity for international arenas
 - Eg. IEA Wind Task19, EU Horizon 2020

Heating makes the difference – just quantify it

Nos 1 and 3 heating on No 2, heating off

- Bonus turbines with blade heating
- Built 1998-99, in operation

Video: Raimo Huuhtanen, Vapo

TECHNOLOGY FOR BUSINESS

<u>.</u>

74

 $\sqrt{2}$