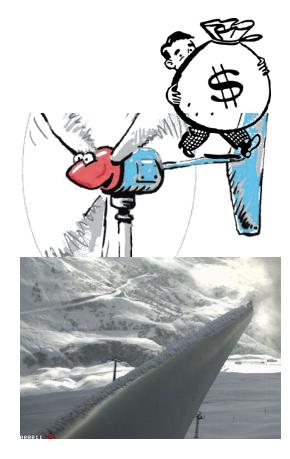


Operation of wind parks under icing conditions


A balancing act between production and safety

Winterwind 2015 - Piteå February 4, 2015

> René Cattin Meteotest

Motivation

Production

Safety

Safety versus production

Safety

versus

Production

What is the best strategy?

The strategy

...is **site specific** and dependant on:

Things you cannot change (easily):

- Icing conditions (frequency, loads)
- Surroundings (distance to houses and roads)
- Authorities (start/stop regulations)

Things you can influence:

- Turbine equipment (ice detection, de-icing)
- Turbine operation mode (stop and restart prodecure)

IEA ice class	Duration of meteorological icing [% of year]	Duration of instrumental icing [% of year]	Production loss [% of AEP]
5	>10	>20	>20
4	5-10	10-30	10-25
3	3-5	6-15	3-12
2	0.5-3	1-9	0.5-5
1	0-0.5	<1.5	0-0.5

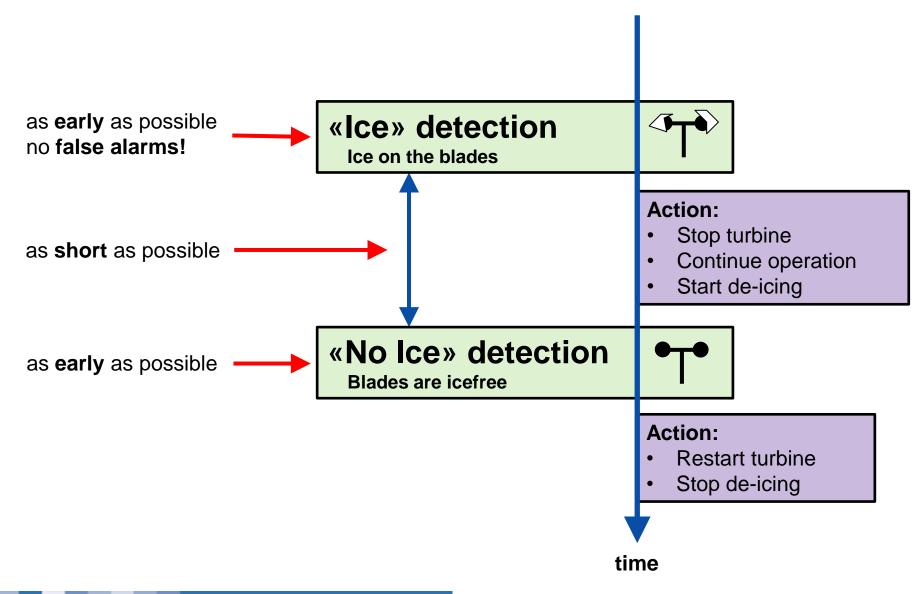
Distances

A wind turbine with anti-icing system in Finnish Lapland. © VTT 2012

Regulations

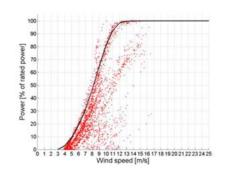
01/501/501/504		Moderate icing			Varying icing				Strong icing		
OVERVIEW MATRIX	Response-options	DENMARK	NETHERLAND	UNITED-KINGDOM	GERMANY	CHINA	SWITZERLAND	AUSTRIA	FINLAND	CANADA	SWEDEN
Population density per km ²		130	495	257	229	140	193	102	18	3	23
Assessment of the icing frequency and intensity of the location Definition of the extent of the danger zone for icefall/ icethrow	Not at all By synoptic consideration Comparison heated/ unheated anemometer Ice Sensor Ice Map Any other Not at all Empiric formula Risk assessment Any other No restrictions Signpostings										
Which implications/ restrictions arise for the danger zone?	Confirmation for affected private land Agreement to close public roads Any other Yes										
Is it allowed to operate the turbines with iced-up blades?	No										
Automatic restart?	Yes No Not specified										
Which requirements are stipulated as to the detection of ice on the turbine	Manufactor solution (ice sensor, power curve) Solution during standstill Redundant system Not specified										
Do authorities dictate/ prescribe the utilisation of a blade heating?	Yes No										

<u>Disclaimer:</u> Completeness of the information and data provided in the given cases and evaluations is excluded. Other cases and examples are feasible.

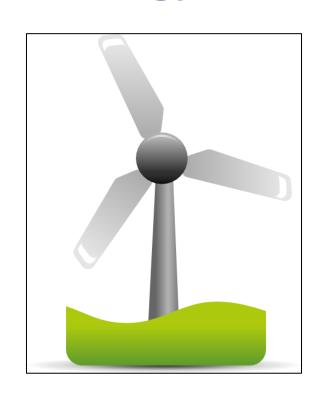


Turbine equipment and operation mode

Ice and «no ice» detection


Not so efficient strategy

More efficient strategy

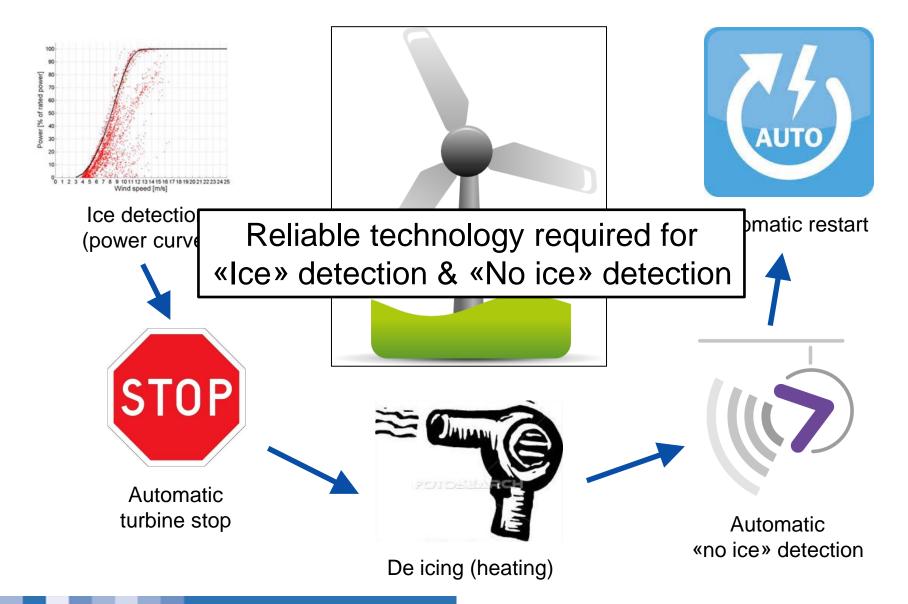


Ice detection (power curve)

Automatic turbine stop

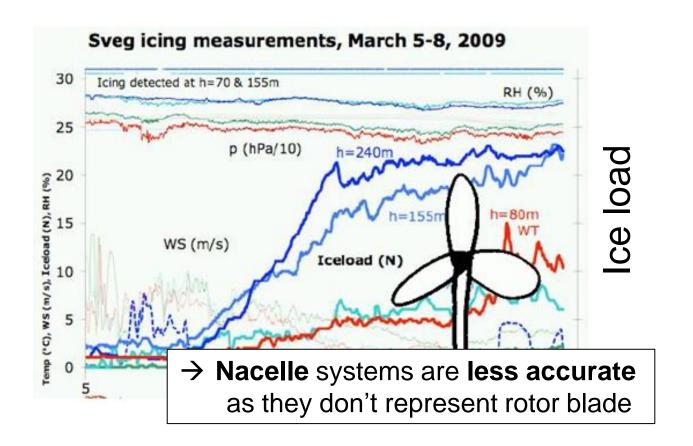
Ice melting

Automatic restart



Automatic «no ice» detection

Even more efficient strategy



«Ice» and «no ice» detection

- Option 1: Point measurements at the nacelle
- Option 2: Measurements at the rotor blade

«Ice» detection options

Nacelle based systems

- Environmental conditions (temperature, humidity)
- Stop of anemometer or wind vane
- Ultrasonic probes
- IR reflection
- Load cells
- •
- → Nacelle conditions do not represent rotor blade
- → Big differences in **technical maturity**
- → Inter-comparisons and REX available
- → No new systems being developed

«Ice» detection options

Rotor blade systems

- Operational data (power curve, pitch angle)
- Accelerators/Strain Gauges (pitch data required)
- Radio Frequency Electromagnetic Fields RFID
- Impedance/capacitance sensing technology
- •
- → Big differences in **technical maturity**
- → Robust systems available
- → Hardly any inter-comparisons or REX available
- → New developments
- → Low acceptance by authoritites

«No ice» detection options

Nacelle

- Temperature above 0° C for xx hours
- Anemometer or wind vane resume operation
- Load cell does not indicate ice anymore

Rotor blade

- Operational data → requires turbine operation
- Accelerators/Strain Gauges
- Impedance/capacitance
- RFID
- → More focus on «no ice» detection required

Wrap up

- The strategy "production vs. safety" is always site specific
- Turbine equipment and control strategy have a lot of room for improvement (automatic restart)
- Nacelle based ice detection systems are less accurate
- Robust systems for "ice" detection on rotor blade available, timing can be improved
- "No ice" detection has to be more in focus of developments
- Nacelle systems not suitable for "no ice" detection
- There is a need for field studies and inter-comparisons of rotor blade systems

