

Validation of icing and wind power forecasts at cold climate sites

Øyvind Byrkjedal, Henrik van der Velde, Bjørn Egil K. Nygaard oyvind.byrkjedal@vindteknikk.no

Winterwind 2015, Piteå, February 3-4 2015

Toppforskningsinititativet

Power forecasts

- WRF simulations at 6km x 6km resolution
- 4 times daily
- GFS 48 hour forecasts

Forecasting of icing

The aim is to know when icing will occur:

- Power trading
- Blade heating systems:
 - Start the heating before icing starts
 - Avoid unnecessary stops during heating
- Risks of ice throw / ice fall
 - Planning of maintainance
 - Public safety
- Monitoring of exposed power lines
 - Avoid damages

Ålvikfjellet, January 2014, foto: Ole Gustav Berg, Statnett

Meteorological icing vs instrumental icing

Icing on a regional scale - Icing rate

Validation of icing forecasts

Validation of large ice loads

Validation of icing

- Identification of icing from SCADA data:
 - Davis et al. (2014)
 - P10 treshold curve
 - Time constraints
 - Temperature constraints

Validation of instrumental icing

• The periods with observed instrumental icing compared to modelled periods with instrumental icing.

	Site 1	Site 2	Site 3
Ratio of time when ice is detected	21 %	13 %	10 %
False alarm ratio	2.4 %	2.9 %	5.6 %
Probability of detection	73 %	68 %	81 %

Validation of meteorological icing - Timing

 60 % of the observed icing episodes starts when the model indicates meteorological icing

Timing challenge:

- In 25 % of the cases the model
 forecasted the icing too late
- Time shift of the results gives improved timing of icing for this site

Energy forecasts

Forecasting of power losses

Forecasting of power production

• **Bias and mean absolute error** (MAE) in the forecasts are **reduced** when we include production losses due to icing

14

Summary

- Gained experiences from operational forecasting of icing
- Validation of instrumental icing:
 - Able to predict the large buildup of icing that resulted in power line damages in 2013-2014
 - Probability of detection: 68-81%
 - False alarm ratio: 2-5 %
 - Validation of meterological icing:
 - 60 % of the observed icing episodes starts when the model indicates meteorological icing
 - Validation of power forecasts:
 - General improvement of the power forecasts when the icing is included.

Thank you for your attention!

Toppforskningsinititativet

Icing conditions

- Temperatures below freezing
- cloud or fog containing small water droplets
- Something to freeze to

in-cloud icing

Calculation of in-cloud icing

 Icing intensity calculated according to ISO 12494:

 $\frac{dM}{dt} = \alpha_1 \alpha_2 \alpha_3 \cdot w \cdot A \cdot V$

 α_1 - collision efficiency, $\alpha_1 = f(V,d,D)$ α_2 - sticking efficiency, $\alpha_2 \approx 1$ α_3 - accretion efficiency, $\alpha_3 = f(V,d,w,T,e,D,\alpha_1)$ w - cloud liquid water content A - collision area, perpendicular to flow V - Wind speed

Observation data

- Data from one wind farm:
 - 10 minute frequency
 - power, nacelle wind speeds, temperature, turbine alarms
- Identification of icing from power data:
 - Temperature treshold: T<+2 °C
 - Power treshold: P < P_{low}
- Definition of icing periods:
 - Icing identified for 3 or more turbines
 - Duration of minimum 12 hrs
 - Aggregated to 20% power loss or more

Forecasting of power

- Reduced number of cases with overprediction of power production in the forcast with icing
- Higher number of cases with error less than 12.5 % in the forcast with icing
- Higher number of cases with underprediction of the power production in the forecast with icing

Power loss during periods with instrumental icing

