

Open your mind. LUT. Lappeenranta University of Technology

ALSTOM

Case study of Lidar measurements in southeast Finland – Lidar performance and wind conditions in cold climate and complex terrain

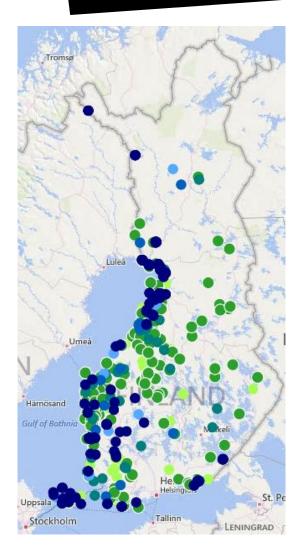
WinterWind 2015, Piteå, 3.2.2015

Katja Hynynen Elvira Baygildina Svetlana Afanasyeva Olli Pyrhönen *LUT Energia*

Jordi Armet Pau Nualart Iciar Font *Alstom Renovables España S.L*

Outline

- Background
- Scope
- Measurement campaign
- Site assessment
- Lidar measurements
- Lidar performance
- Upflow angle evaluation
- Wind shear evaluation
- Conclusions



Background

- Amount of wind power is exploding
 - Existing wind turbines (blue) and planned projects (green) in Finland can be seen in picture.
- Wind shear conditions in inlands may be challenging due to forestry environment
 - \Rightarrow Reduces energy production
 - \Rightarrow Increases turbine loads
- Wind shear along the whole rotor area can easily be determined using Lidar technology

Picture: http://www.tuulivoimayhdistys.fi/tuulivoimalaitokset

Scope

- Scope of this study is to investigate
 - Lidar operation and availability in cold climate
 - Upflow behavior in a wind farm in southern Finland
 - Wind shear conditions in a wind farm in southern Finland
- The study is a part of a research project
 'Wind power in cold climate and complex terrain' carrying out by
 - Lappeenranta university of technology
 - Alstom Renevables España S.L
 - TuuliMuukko and
 - TuuliSaimaa

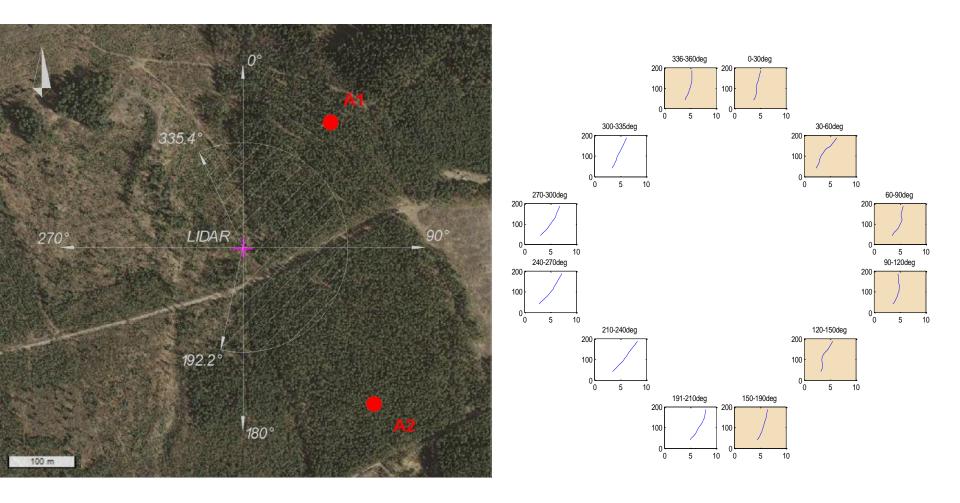
Scope

	WP		Sub. WP	Title	
	1.	WP1. WIND FARM DATA ACQUISITION	1	Wind farm data acquisition	
			2.1	Power performance in cold climates	
	2.	WP2. POWER & OPERATIONAL PERFORMANCE ANALYSIS AND OPTIMIZATION	2.2	Operational performance in cold climates	
2.	2.		2.3	Evaluation of WTG loads and dynamics due to ice accretion	
			2.4	Analysis turbine control for cold climate	
	3.	WP3. ICING SENSORS AND ICE DETECTION	3.1	State of the art	
			3.2	Performance analysis of ice detection sensors	

Measurement campaign

- Measurement campaign was performed in a wind farm of seven 3 MW Alstom
 ECO110 cold climate version turbines in southeast Finland
- Measurement period was 17.12.2013 30.11.2014. (Campaign is still going on.)
- Wind measurements were performed using WindCube v2 ground-based Lidar

Site assessment

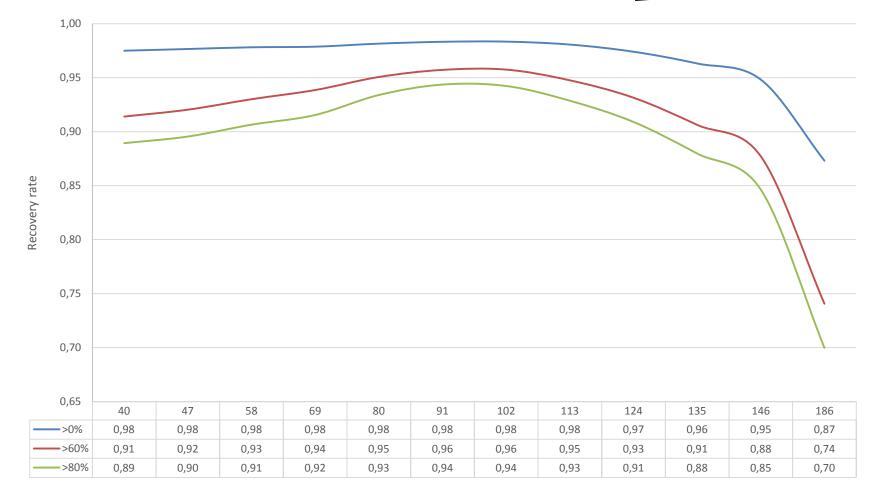

- Wind farm is situated in variable terrain with mostly forest and industrial area.
- Research turbine and lidar location are surrounded by similar terrain.
- Lidar is situated 250 m (2.3*D) from the research turbine on the direction of predominant upwind.
- 11 measurement heights were chosen along the rotor area 40-146 m + 12th height 186 m

Site assessment Free flow checking – Shear rose

Open your mind. LUT. Lappeenranta University of Technology

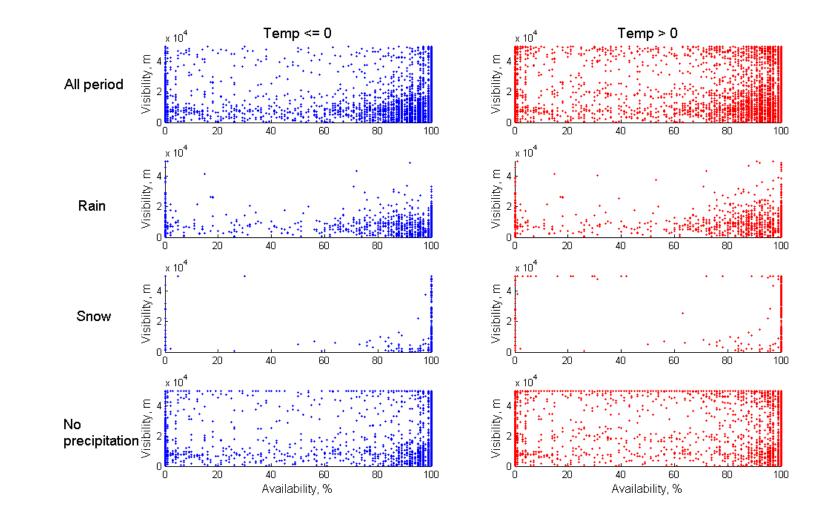
Lidar measurements

- Windcube v2 ground-base lidar was used
- 12 heights from the range 40 184 m
- Installed on a pedestal and inside fences is order to keep people and animals away.
- Power is obtained from the grid.
- Additional water tank required for wiper operation.
- Windcube equipped with Flow Complexity Recognition (FCR) module

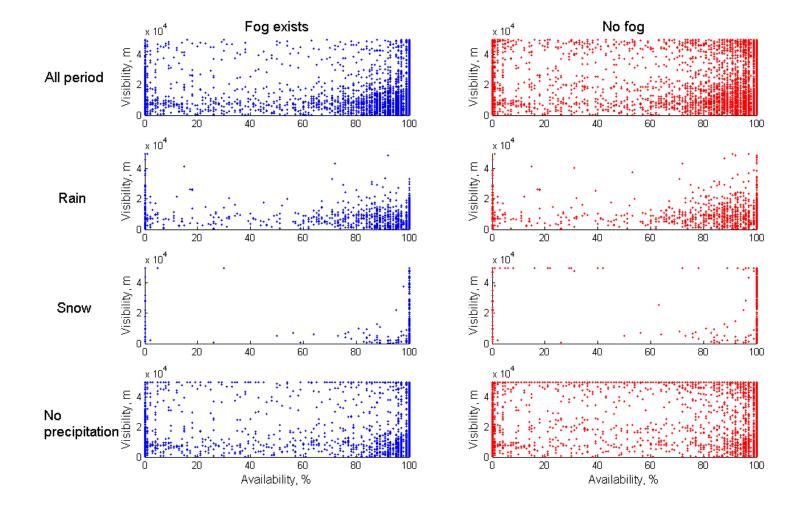

Lidar performance

- Operates without problems in all temperatures, the minimum temperature reached in January 2014 was -23.5 °C.
- Tolerates well snowing.
- Clean atmosphere in Finland sets challenges to Lidar operation.
- Lidar performance was improved decreasing CNR threshold from -22 dB to -25 dB and later to -26 dB.
- The following analyses were performed in order to investigate the lidar performance:
 - Recovery rate in different heights and availabilities
 - Availability in different weather conditions. Weather data was obtained from Finnish meteorological institute (FMI)

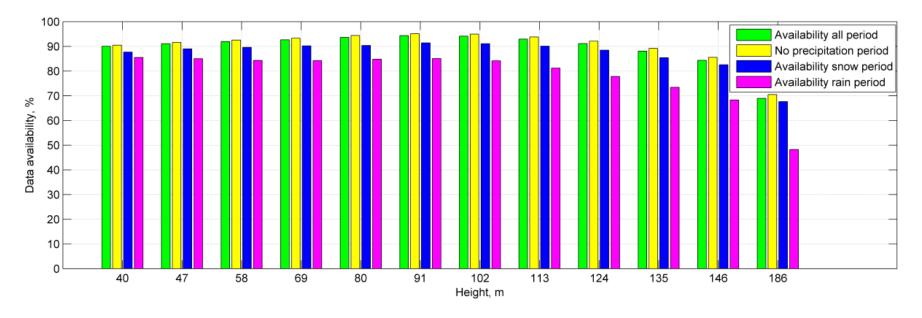
Lidar performance: Recovery rate vs.height and availability


Lidar performance Recovery rate monthly

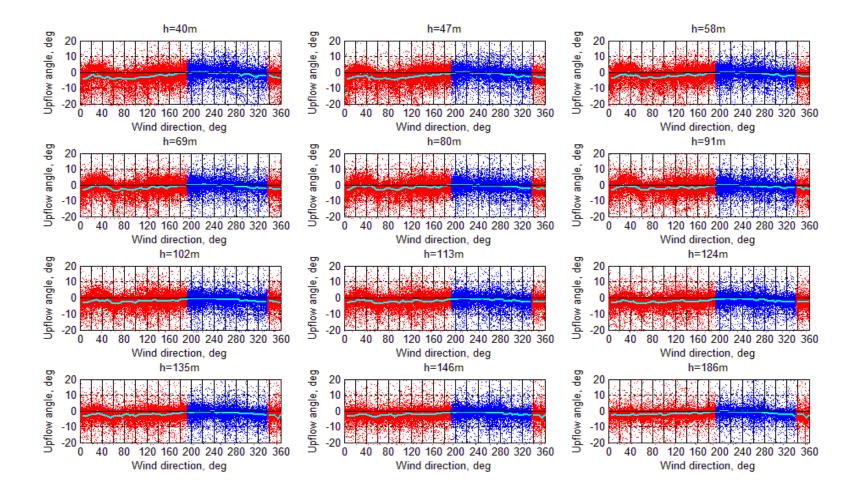
	Availability >0% for all heights	Availability >60% for all heights	Availability >80% for all heights	Notes
December 2013	0.57	0.38	0.35	Wiper broke
January 2014	0.80	0.70	0.67	Problems with wiper
February 2014	0.80	0.69	0.67	
March 2014	0.89	0.75	0.71	
April 2014	0.83	0.57	0.51	
May 2014	0.96	0.79	0.72	
June 2014	0.85	0.60	0.53	
July 2014	0.98	0.89	0.84	
August 2014	0.99	0.91	0.87	
September 2014	0.98	0.95	0.93	
October 2014	0.95	0.86	0.83	
November 2014	ember 2014 0.64 (0.85 when 0.5 186 m excluded)		0.52	Poor availability at 186 m
Whole period	0.87	0.74	0.69	
1.1.201430.11.2014	0.88	0.75	0.71	


Lidar performance Data availability vs. visibility

Lidar performance Data availability vs. visibility during fog



Lidar performance Data availability filtered by type of precipitation

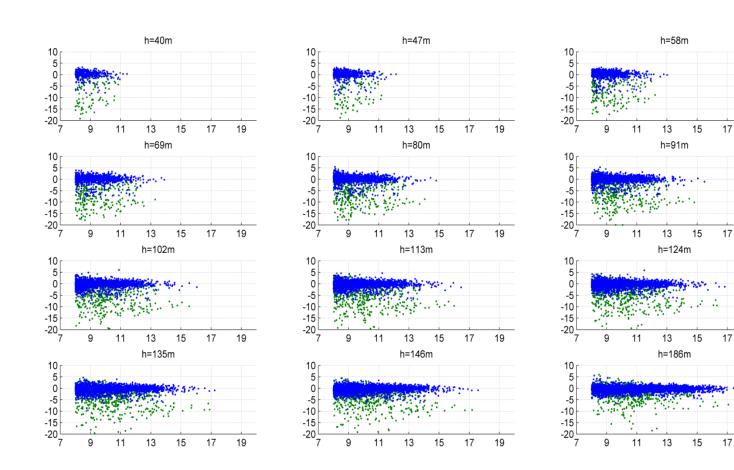


- All type of precipitation reduce the LIDAR data availability
- Snow has less impact in reducing LIDAR data availability and is constant along the heights
- Rain has a bigger impact in LIDAR data availability and more notorious in higher altitudes

Upflow angle vs. height Free sector (blue) vs. blocked sector (red)

Open your mind. LUT. Lappeenranta University of Technology

Upflow angle vs. height Foliage influence



19

19

19

19

Foliage

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

No foliage

Upflow angle evaluation Summary

- Free sector vs. blocked sector
 - On free sector, average values of uplow angle are close to zero.
 - Inside blocked sector, the average values in some directions go down to
 -3 - 4 ° even at height of 146 m.
- Influence of foliage
 - Foliage has strong influence on upflow angle
 - During foliage period, there is obvious inclunation towards upflow angle -10 °.
 - During the period with no foliage, the forest has more porosity, and upflow angle keeps around 0 °

Wind shear evaluation

- Three different laws to describe vertical wind profile were considered
 - Power law
 - Logarithmic law
 - Modified logarithmic law
- Complex terrain conditions were characterized by
 - Shear exponent, α
 - Surface roughness length, z_0
 - Displacement height, d
- The parameters were fount to be out of the tabulated range, which corresponds to highly forested area

Wind shear evaluation: Power law

= Each pair of 12 heights were used to find power law exponent α

$$\alpha = \frac{\ln\left(\frac{V_{hub}}{V_i}\right)}{\ln\left(\frac{Z_{hub}}{Z_i}\right)}$$

- Vertical profile for every α is generated as

$$V_i = V_1 * \left(\frac{Z_i}{Z_1}\right)^{\alpha}$$

- Each generated profile was compared with averaged measured vertical profile
- Goodnes of fit between every generated profile and reference profile for each 10min sample was determined
- As a result, wind shear calculated between 40 and 91 m gave the maximum number of occurrence.
- Thus, the best fit average wind shear exponent is $\alpha = 0.38$.

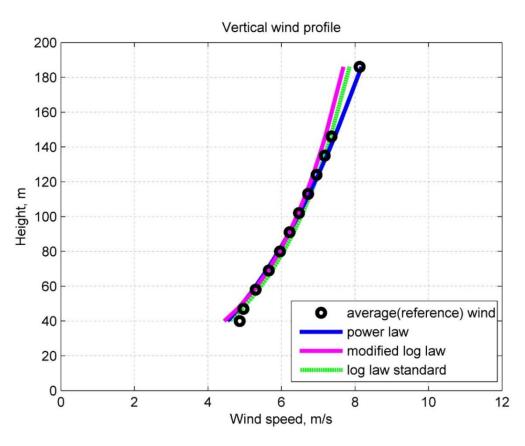
Wind shear evaluation: Logarithmic law

- Logarithmic wind profile is determined as

$$\frac{V_i}{V_r} = \frac{\ln\left(\frac{Z_i}{Z_0}\right)}{\ln\left(\frac{Z_r}{Z_0}\right)}, \quad \rightarrow \quad V_i = V_r * \frac{\ln\left(\frac{Z_i}{Z_0}\right)}{\ln\left(\frac{Z_r}{Z_0}\right)}$$

- Determined surface roughness length using the measurements in heights 40 and 91 meters was $z_0 = 4.6$ m.
- Obtained roughness length is higher than any tabulated roughness values.
 Depending on the references, roughness lengts 1 (or 3) are used for cities with tall buildings. Values > 1 for tall forests. The forest in the are of the Lidar, however, is dense but with trees of around 5-8 m height.

Wind shear evaluation: Modified log law


 Modified logarithmic law is used to characterize wind above a forested canopy

$$V_i = V_r * \frac{\ln\left(\frac{Z_i - d}{Z_0}\right)}{\ln\left(\frac{Z_r - d}{Z_o}\right)}$$

- Displacement height *d* is about 2/3 of the height of the trees at the site.
- With matlab fit-function, following values for surface roughness length and displacement height were determined
 - $z_0 = 3.7 \text{ m}$
 - d = 5 m
- The parameters would apply for about 7.5 m high forest, but surface roughness lenght is still considerably high.

Wind shear evaluation Comparison

- Power law
 - Best fit with exponent $\alpha = 0.38$
- Logarithmic law
 - Surface roughness lenght $z_0 = 4.6$ m.
- Modified logarithmic law
 - Surface roughness length $z_0 = 3.7, d = 5 \text{ m}.$
- All parameters determined between heights 40 and 91 m.
- All obtained values describe tall forest or urban area with tall buildings.
- Best fit obtained with power law.

Conclusions

Lidar operation in weather conditions of South Finland, wind shear and upflow angle in forested environment were studied:

- Windcube Lidar tolerated well **low winter temperatures** and **snowing**.
- Due to the clear atmosphere, Lidar CNR threshold was set below the default value. Lowering the CNR threashold by -1 dB increased the availabilities about +10%
- Data availability were greater than 85% along the heights 40-146 m (rotor area limits). At hub height, the availabilities are greater than 94%.
- Data availability is good during the visibility is low. However, all type of precipitation reduces the availability.
- Upflow angle is bigger for the blocked sector and it is tree foliage dependant.
- Best fit for the vertical wind profile was obtained using **power law** between levels: **hub height and HH-blade tip**. The mean shear exponent found was $\alpha = 0.38$.

Next steps

- Further analysis of Lidar availability during no precipitation periods
- Further analysis of wind shear in forested terrain
- Significance of Lidar Flow Complexity Recognition in forested terrain
- Shear, upflow and temperature effect on Power Performance under IEC61400-12-1, IEC61400-12-1 ed 2. (draft) and IEC61400-12-2.

Thank you for the project partners:

TuuliMuukko

