Breaking the ice using passive anti-icing coatings – Lessons learned from the Nordic TopNANO research project

Presented by **Agne Swerin**, SP Technical Research Institute of Sweden Poster at Winterwind 2015, February 3-4, Piteå, Sweden

SP Technical Research Institute of Sweden

TopNANO – ice accretion related to wind, airplanes and heat exchangers

- Need and potential for nanotechnology to increase energy efficiency and combat icing problems
- Description of TopNANO project Nordic Top-level Research Initiative for applied nanotech
- Summary of project outcome
 - Superhydrophobicity when it works and does not work for anti-icing
 - Ice adhesion on substrates with quasi-liquid layers
 - Methodology for studies of biological stain removal
 - Icing wind tunnel and new ice adhesion test
 - Scaled-up field tests at a wind park
 - Nordic platform for ice-related research and innovation

Co-authors to this presentation

- Mikael Järn and Kenth Johansson, SP Technical Research Institute of Sweden
- Joseph Iruthayaraj and Sergey Chernyy, Aarhus University, Denmark
- Per Claesson, KTH Royal Institute of Technology, Stockholm, Sweden
- Lasse Makkonen and Juha Nikkola, VTT Technical Research Centre of Finland

Project and funding partners

• Research partners in surface chemistry, coatings and ice physics

Project and funding partners

• Companies from aircraft, wind power, heat-exchanger industry and coating companies

SP Technical Research Institute of Sweden

With funding from

Ice and frost formation – a nanotech area?

- Ice exists in fifteen different forms, the most usual is hexagonal
- Frost is formed directly from water vapor
- Ice is a nanostructured material
- Methodology to combat ice build-up is nanotechnology

Icing – a complex problem

Different types of icing depending on the conditions

- In-cloud icing
 - Supercooled water droplets
 - Soft rime, hard rime, glaze
- Precipitation
 - Snow or rain
 - Freezing rain
 - Wet snow
- Frost
 - Water vapor solidifies on a cool surface

Anti-icing and de-icing

De-icing: removal of ice

Anti-icing: prevention of ice accretion

- Active
 - Mechanical (de-icing)
 - Thermal (heating foils or hot air)
- Passive
 - Chemical
 - Surface coatings
- Thermal requires lots of energy and chemicals may be harmful for the environment
- Anti-icing coatings the ideal solution
- But... few commercial products available

Deliverables

- Optimization of **surface chemistry and surface topography on the nanometer scale** to retard ice and condensation formation
- Effect of different **surface anchored functional groups**, polar uncharged and polar charged groups, on ice adhesion
- Develop **robust superhydrophobic** coating formulations

Deliverables, cont'd

- Negative influence of **biological fluid stains** from impacted insects on wind turbines, aircraft wings and heat exchanger surfaces
- Novel nanotech coatings for anti-freezing
- New surface materials and **benchmarking** against the existing technology, in terms of cost, performance and LCA

Deliverables, cont'd

- Shorter and longer field tests during the winter seasons
- Transfer to Nordic industries through direct industry-academia collaborations
- Develop Nordic platform for deicing and anti-icing and proliferate to other sectors
- Industry partners at the end of the project have one concept validated under relevant conditions, two more validated in lab and another three concepts tested

TopNANO – ice accretion related to wind, airplanes and heat exchangers

- Need and potential for nanotechnology to increase energy efficiency and combat icing problems
- Description of TopNANO project Nordic Top-level Research Initiative for applied nanotech
- Summary of project outcome
 - Superhydrophobicity when it works and does not work for anti-icing
 - Ice adhesion on substrates with quasi-liquid layers
 - Methodology for studies of biological stain removal
 - Icing wind tunnel and new ice adhesion test
 - Scaled-up field tests at a wind park
 - Nordic platform for ice-related research and innovation

Lead ideas to reduce ice formation

- Superhydrophobic surfaces
- Surfaces exposing chemical groups that are water-structure breakers
- Understand on a molecular level <u>why</u> or <u>why not</u> these concepts work

The superhydrophobic track

- Preparation of superhydrophobic coatings
- Surface energy recovery after soiling
- Depends on the *receding* contact angle
 - Soiling a major issue
- Superhydrophobicity relies on surface chemistry and *topography*
 - Wear resistance crucial

 $W_{adh} = \gamma_{LV} \left(1 + \cos \theta_{rec} \right)$

Does a superhydrophobic surface retard droplet freezing?

- Surfaces with similar chemistry but different topography
- Water contact angles as function of temperature
- Water droplet freezing delay time
- Results explained by heterogeneous nucleation theory

Contact angle as a function of temperature

Water condensation and frost formation reduces contact angles on the superhydrophobic surface

Conclusion

 Contact angles measured at room temperature do not represent the wetting under supercooled conditions

Freezing delay on different surfaces

• No benefit from a superhydrophobic surface, if anything a smooth surface is better!

Heidari et al. (2010) SP Technical Research Institute of Sweden

The explanation – heterogeneous nucleation

- Large surface features should not have any effect since r* is small
- All real surface has both concave and convex features
- Freezing occurs most readily in depressions (concave) and least readily on concave sites

r* = critical ice nucleation radius \approx 9 nm at -5 °C and about 4.5 nm at -10 °C

TopNANO – ice accretion related to wind, airplanes and heat exchangers

- Need and potential for nanotechnology to increase energy efficiency and combat icing problems
- Description of TopNANO project Nordic Top-level Research Initiative for applied nanotech
- Summary of project outcome
 - Superhydrophobicity when it works and does not work for anti-icing
 - Ice adhesion on substrates with quasi-liquid layers
 - Methodology for studies of biological stain removal
 - Icing wind tunnel and new ice adhesion test
 - Scaled-up field tests at a wind park
 - Nordic platform for ice-related research and innovation

Anti-icing coating

- Quasi liquid layer
- Hydrophilic polymers at the solid surface
- How does different ions influence ice adhesion?

Ice adhesion measurements

- Ice adhesion with counterion Li⁺
 - 40 % lower at -18 °C
 - 70 % lower at -10 °C
 - Different type of failure

TopNANO – ice accretion related to wind, airplanes and heat exchangers

- Need and potential for nanotechnology to increase energy efficiency and combat icing problems
- Description of TopNANO project Nordic Top-level Research Initiative for applied nanotech
- Summary of project outcome
 - Superhydrophobicity when it works and does not work for anti-icing
 - Ice adhesion on substrates with quasi-liquid layers
 - Methodology for studies of biological stain removal
 - Icing wind tunnel and new ice adhesion test
 - Scaled-up field tests at a wind park
 - Nordic platform for ice-related research and innovation

Wind power – Field tests in two winters 2013 and 2014

- Surface modification of samples
- Surface characterization
- Mounting samples and monitoring
- Evaluation of samples post-winter

Work flow

SP Technical Research Institute of Sweden

Top-level Research Initiative

norden

Best candidates from laboratory ice adhesion tests

SP Technical Research Institute of Sweden

Superhydrophobic coating #2

Snapshots from water wetting experiments before and after field tests

Before field tests – water runs off

Superhydrophobic coating #2

Snapshots from water wetting experiments before and after field tests

Same sample after field tests – still good

TopNANO – ice accretion related to wind, airplanes and heat exchangers

- Need and potential for nanotechnology to increase energy efficiency and combat icing problems
- Description of TopNANO project Nordic Top-level Research Initiative for applied nanotech
- Summary of project outcome
 - Superhydrophobicity when it works and does not work for anti-icing
 - Ice adhesion on substrates with quasi-liquid layers
 - Methodology for studies of biological stain removal
 - Icing wind tunnel and new ice adhesion test
 - Scaled-up field tests at a wind park
 - Nordic platform for ice-related research and innovation

Example of related projects

- ANTIS Norwegian research council
 - Passive anti-icing coatings
- Micro-Deice Swedish Energy agency
 - Active anti-icing
- Retrofit-Deice KIC Innoenergy
 - Active anti-icing
- ICECONTROL Eurostars
 - Anti-icing control on railroads

TopNANO – project summary

Main achievements

- Well-functioning consortium and research collaboration in the Nordic countries
- Strong engagement from industry: advice, samples/testing, field tests

TopNANO – project summary

Crucial elements for project success

- Strong industrial participation in project group
- Field tests and scaled-up tests for wind and heat exchanger applications

TopNANO – project summary

Take aways

- Established Nordic platform
- Broaden to other sectors (maritime, offshore, transport, power transmission, etc.)
- Major public funding and industrial contracts
- Work through the network of TopNANO industrial companies.