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Quantification of energy losses caused by blade icing 
and the development of an Icing Loss Climatology 
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Using SCADA data from Scandinavian wind farms 

Staffan Lindahl 
Winterwind 2015 
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Winterwind 2014 
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Conclusions we drew 
 SCADA data are great for 

quantifying energy loss caused by 

blade icing 

 Losses in Scandinavia vary greatly, 

from close to 0% to more than 

10% of annual energy production. 

 Evidence of correlation between 

elevation and icing loss. Linear 

over small elevation range. 

Polynomial over large range? 

 Potential scope for developing 

empirical relationship between 

icing losses and elevation 

 

What we found What we did 
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Contents 

 Review of operational data considered 

 Re-cap on loss calculation method 

 

 Specific investigations undertaken 

– Influence of control strategy 

– Inter-annual variability 

– Importance of elevation – update from Winterwind 2014 

 

 Conclusions 
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Data included 

 Data from 350 wind turbines (+200) 

 18 Wind Farms (+8) 

 Reasonable geographical coverage 

– 10+ projects in Sweden 

– <5 Projects in Norway 

– <5 Projects in Finland 

 Excludes projects where icing loss is managed manually 

 Includes projects where: 

– Turbines that shut down when controller detects icing 

– Turbines that remain operational during blade icing events 
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Energy loss quantification 

 Define ‘Base-line’ power curves based on 

data for  Normal operation only; 

 The energy loss  is defined by the Actual 

less the Expected production; 

 An energy loss value is calculated for each 

each 10-minute record. 

 Results in a database of Actual Power, 

Expected Power and an icing event log, for 

each turbine and each 10-minute record.  
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Power deficit 
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Influence of control strategy 

 Question: What’s the potential 

benefit of keeping turbines 

operational during icing events? 

 Method:  

– Simulate energy losses which would 

have been incurred during icing for 

projects which remain operational 

during icing events 

– Compare actual to simulated losses 

– Assumptions about sensitivity of 

controller ice detection required.  

 Impact on loads not considered 
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Inter-annual variability 

 Question: How much do icing losses 

vary from year to year? 

– Derive monthly icing loss for each wind 

farm 

– Calculate annual icing loss (July to June) 

based on nominal production profile.  

– Only projects with very long operating 

periods useful 

– Inter-annual variability (IAV) defined by 

the coefficient of variation 

 High mean loss coincides with low variability 

 Low mean loss coincides with high variability 

 Very long datasets required to accurately 

determine long-term mean losses 
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Importance of elevation 

 Questions: How do icing losses vary 

with altitude? 

– Individual turbine mean annual losses 

calculated 

– Correlation of loss vs. effective hub-height 

 Strong relationship between loss and 

elevation throughout Sweden; 

 Coastal Norway and Finland do not 

follow trend of Swedish sites, although 

data-sets are small.  
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Icing loss climatology 
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 Relationship of annual icing loss and elevation used 

to define icing climatology 

– Represents loss for projects were turbines remain 

operational through icing events.  

 Geographical coverage limited by: 

– Data availability 

– Reliability of loss / elevation relation 

– General experience of factors driving icing: cloud base 

elevation, Arctic / Siberian weather systems, Atlantic / 

Gulf stream effect.  

 Uncertainty in loss estimate needs to be recognised 

– High variability inevitable leads to high uncertainty 

– Confidence elevated due to good length of datasets (6+ 

years) in combination with geographical diversity.   
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Conclusions 

 Increased confidence in using elevation as a proxy for icing loss in Sweden 

– Deemed sufficient to create an icing loss climatology covering most of Sweden. 

– Initial results suggest the relationship is not applicable to Finland and coastal Norway. 

– More data required to patch gaps in Sweden, and understand Norwegian and Finish conditions. 

 

 Great potential for reducing energy loss by keeping turbines operational through icing 

conditions, rather than shutting down.  

– Relative benefit diminishes with increasing icing loss.  

– Impact on loads not considered here.  

 

 Inter-annual variability in icing losses is very high.  

– Measurement period in excess of 5 years required to reduce loss prediction error below 2% 

of AEP.  
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