Deicing of Wind Turbines using Microwave Technology

Joachim Karthäuser, Re-Turn AS / Icesolution AS Kenth Johansson, SP Mikael Järn, SP Lars Eng, Re-Turn AS Göran Gustafsson, Pegil Innovations AB Bernt Granberg, MW Innovation AB Peter Krohn, Vattenfall R&D AB Stein Dietrichson, Paal Skybak, Re-Turn AS Mikael Nordeng, Lars Dietrichson, Re-Turn AS

Presented at Winterwind 2015, Piteå, February 02-04, 2015

Agenda

- Background, "Micro-Deice" consortium, objectives
- Microwave De-icing and CNT coatings
- Energy demand (deicing and anti-icing)
- Proposed solutions, microwave systems
- Summary

Project history: TopNANO and DEICE

NICe, Budget ca. 3 M€, 2011-2014

R&D: SP (coordinator), KTH (SE), Aarhus Univ. (DK) and VTT (FI)

Industry: SAAB, Vattenfall, Electrolux, Nibe, Danfoss, SAPA (Gränges), MW Innovation, Re-Turn, n-Tec

Targets: heavy-duty coatings with no / reduced ice adhesion in three sectors: windpower, aircraft and heat exchangers

NFR, Budget ca. 4 M€, 2011-2014

Industry: Re-Turn, n-Tec, (IFE)

Targets: CNT coatings, electrothermal heaters → microwave deicing

Output: 4 patent appl., new company Icesolution AS (SE/NO)

www.topnano.se

titute of Sweden

Micro-Deice – Objectives

- <u>Proof-of-concept:</u> combine energy-efficient microwave deicing with a durable top-coating with low ice/water adhesion, building on TOPNANO
- Ensure <u>lightning</u> protection and <u>HSE</u> aspects
 - **Optimization** wrt MW absorption and heat generation.
 - Combination of active and passive coatings.
 - Ageing properties.
 - Formulations optimized for spray coating
 - Scale-up trials, prepare field trials
 - Microwave sources, incl. wave guides for field tests
 - Health & Safety, incl. lightning sensitivity

Micro-Delce combines Active & passive De-icing

- **SP** coordinator, lab scale development work, testing, etc. Experience with materials, RF, lightning, risk analysis, TOPNANO background
- **Re-Turn AS** developer of technology, microwave absorbent supplier, Experience: marine coatings, CNT processing, composites (HV), DEICE
- **MW Innovation AB** consultant, Topnano partner: Experience from electrical deicing heating foils
- **Pegil Innovations AB** supplier of MW sources, incl. Waveguides, Experience: MW drying ovens, construction
- Vattenfall R&D AB potential end-user of the technology
- Network of R&D (KIT), chemistry (Arkema), experts, finance, end-users

Project duration: sep 2013-aug 2015, budget: ca. 350 k€ Sponsor: Swedish Energy Agency

Introduction CNT coating / MW / results

Introduction to Microwave De-Icing

Technology

- Carbon Nanoparticles in a coating or film absorb MW radiation and generate heat
- Special innovation: coating itself
- Microwave generators inside the blades (ideal)

New installation or Retro-fit

- Mechanically safe installation of MW generator and waveguide
- Stretch target: Anti-icing functionality

Status

- Prototype operating in cold lab (-20 °C)
- Economic estimates encouraging
- Proof of concept tbd

Coating characterization

IR camera setup

Transmittance setup

Coax-waveguide

Waveguide

Waveguide

Screening of coatings

SP SP

SP Technical Research Institute of Sweden

Faraday cage, IR/optical cameras, different waveguides, different foils and coatings

Microwave heating of a small sample (PU coating with CNT)

Infrared camera

web camera

2*2 cm ice cube "glued" onto glaze ice, start -20 °C SP Technical Research Institute of Sweden Tilted surface

Increasing CNT content → absorption of MW

SP SP

SP Technical Research Institute of Sweden

15-20% wt. CNT in MW-absorbing coating (ca. 100 micron) is a good compromise between reflection and absorption of MW. (Reflex is also absorbed.)

Coating is semiconducting. Dispersion and matrix influence.

Actually, physics is non-linear...

Results Micro-Deice (Skövde 2,5 m segment)

Leading edge heating using 2,45 GHz magnetron and waveguide: Efficient, but spatial variation

Successful -20 °C deicing, sep 2014

Tough ice removed in 10-30 min Learnings:

- Coating should be heatconductive and hydrophobic,
- MW should be "intelligent" and self-regulating

Sep 2014 De-icing trials at -20 °C

Summary of microwave / coating tests

- CNT coatings are extremely good microwave absorbers
- 100 micron coatings fit for purpose. Patent appl coating submitted.
- Most MW radiation is absorbed and heats the coating. Negligible loss.
- Reflected radiation is re-absorbed, reflection levels out local temperature differences, caused by wavelength effect (12 cm).
- Preliminary OK for use of aluminium waveguides regarding lightning, provided > 1 mm aluminium is used.
- Annoying spatial variation of 2,45 GHz MW intensity (10 K temp delta)
- Concerns about mechanical stability of alu waveguide (blade flex), possible fix = flexible flanges
- In view of energy demand, search started for better MW generators.

Energy demand for deicing / anti-icing

https://macsphere.mcmaster.ca/bitstream/11375/15330/1/fulltext.pdf

Peter Suke, McMaster University, Ontario, CA

Analysis of heating systems to mitigate ice accretion on wind turbine blades

Important parameters:

Heat supply – heat conductivity (layer by layer) – heat enthalpies (all materials) – melting enthalpy ice – Ice layer thickness which requires melting AND: heat loss to ambient air!

Numerical solutions required (Fourier)

Based on Figure 3.11 (Peter Suke, McMaster): Temperature profiles through the ice and the blade skin, using numerical simulation. Base case conditions, see Table 3.2 for details.

High power, e.g. 5 kW/m² \rightarrow less 20 sec deicing time Low temperature \rightarrow longer deicing time. 1 kW min?

Figure 3.13: Effect of heater power density and ambient temperature on the base case (Table 3.2)

SF Technical Research Institute of Sweden

Peter Suke, McMaster Univ, Ontario

Thick ice layer insulates \rightarrow easier deicing (less W/m2 requ'd)

SP Technical Research Institute of Sweden

Peter Suke, McMaster Univ, Ontario

Hot air (100 °C):

Insulating core is a bottleneck for heat flow.

Most/all heat is lost to ambient air before it can melt the adhesion layer.

Figure 4.7: Temperature profile through the blade and ice with time. The initial temperature is equal to the ambient temperature of -5°C. The inner blade wall is maintained at 100°C. The fibreglass skins are 5 mm thick each and have a conductivity and heat capacity of 0.18 W/mK and 1600 J/kgK, respectively. The foam core is 10 mm thick and has a conductivity and heat capacity of 0.032 W/mK and 1500 J/kgK. The ambient conditions are favourable (Table 4.3).

SP Technical Research Institute of Sweden

Peter Suke, McMaster Univ, Ontario

Summary Energy Demand

- Microwave heatable coatings for anti-icing or de-icing demonstrated in cold container environment (-20 °C), Laboratory tests in line with theory.
- Energy demand high due as ambient air "steals" heat quickly
- Ice layer thickness and ice type are important (for heat loss rate)
- · Hot air solutions seriously disadvantaged
- MW and electrothermal heater: comparable heat flow parameters
- Quick heating close to surface essential, min. 1 kW/m² for deicing (stat.)
- Anti-icing: ca. 5 kW/m² required, especially at tip
- Sequential heating natural choice, depending on available power

Proposed solutions: MW deicing

Semiconductor revolution in microwave heating technology

Transistors replace magnetrons – suitable for wind power. Advantages: Lifetime (!) – weight – price – control (!) – ruggednessdesign & installation options

Deicing: multitude of MW transistors (e.g. 250 W)

- fastening: dependent on blade design
- Coating on whole blade (radar and HSE),
- LE heating 1st option
- Transistors individually addressable
- No HV needed. Easy power supply.

Layer structure: Laminate Gelcoat Insulating layer MW absorber Top coat, LE protection

Commercial offerings: MW deicing

Cooperation with turbine producer, design, production fit

Retrofit of existing turbines in CC: Analysis – Design – Solutions – Installation – Service

Options for field trial: only CNT coating, heating by skylift / MW panel, or internal MW sources

Benefit of CNT coating: less radio / radar disturbance

New study suggested to solve conflicts wind/air traffic!

Summary

- Microwave heatable coatings for anti-icing or de-icing demonstrated,
- Concept: a plurality of MW transistors (2,45 GHz), sequence deicing or antiicing, various configurations possible (LE or tip only, external skylift, etc)
- Potentially cost disruptive
- "Wireless" solution, repair-friendly, flexible, ok for blade bend)
- Extra benefit: reduced radar interference
- Next phase: further upscaling in field tests, cooperation welcome!

Thank you for your attention!

Questions? joachim@re-turn.no

Come and see us at **Booth 39** in the Exhibition Hall here at Winterwind!

