

Ice accretion prediction on wind turbines based on a combined LES-LPT method

R.Z. Szasz¹, L. Fuchs² ¹Dept. Energy Sciences, LTH, Lund University robert-zoltan.szasz@energy.lth.se ²Royal Institute of Technology, Stockholm

Winterwind2011, 2011.02.9-10, Umeå, Sweden

Goals

- Develop numerical tool to predict ice accretion
- Account for both the rotor and the tower
- Possibility to account for
 - upstream wake
 - droplet size
 - landscape

Numerical methods

Flow

- 3rd & 4th o. Finite differences
- Cartesian grid => efficient methods
- Solids: virtual boundary
- Turbulence => LES
- Parallell computations (MPI)

Droplets

- Lagrangian Particle Tracking (LPT)
- Transported by the instantaneous flow
- Equi-sized and spaced droplets
- Drag force
- Droplets hitting a solid surface freeze instantaneously

Case set-up

- 2 tandem WTs
- Tower height = 1 LU
- Blade length = 0.7 LU
- NACA 4415, twisted, ca. 7 degree a.o.a.

• ABL inlet velocity:

 $w(x) = Cx^{0.1}$ $\omega = 0.39 \text{ rot/s}$

- Tip Speed Ratio = 3.5
- 10 x 6.2 mill.cells
- Started from already converged flow case
- 10+ rotations
- 3 droplet diameters
 - 0.1 mm
 - 1 mm
 - 10 mm

Average velocity components

Vortices (λ2)

Tip vortices Swirl Wake

- Secondary vortices
- Long lifetime of vortices
- Interaction with downstream power plants

Deposited particle 'density'

- Number of droplets deposited on the rotor blade
 - 400x400 bins
 - normalized with the total number of deposited droplets
 - d=0.1 mm
 - upstream W.T.
- Larger concentration of deposited droplets
 - leading edge
 - second third of the span

Particle axial velocity plane parallel to ground, hub height

Lund University / LTH / Dept. Energy Sciences / Div. Fluid Mechanics / Winterwind2011 / 2011.02.09-10

Radial distribution of the deposited droplets

- No visible influence of droplet radius on average distribution
- peak @ 0.05 large impact area at the hub
- second peak around r=0.35

- For downstream wind turbine (WT2)
 - less particles deposited in the hub region
 - more particles deposited at r=0.35

Azimuthal distribution of droplet impact frequency

- Traces of the blades and the tower visible
- relatively symmetric (Y-axis is zoomed in)

 Downstream WT shows more asymmetry

Time evolution of droplet deposition

- Blade passages visible
- Large droplets have smoother history due to inertia
- Low frequency large amplitude variations due to the upstream wake

Droplet deposition on the tower

- Blade passages visible
- Large droplets have smoother history due to inertia
- Larger variations than for the droplets deposited on the blades

 Low frequency large amplitude variations due to the upstream wake

Conclusions

- Influence of droplet size
 - In average, no visible influence on the droplet distribution
 - Instantaneously, smaller droplets more sensitive to flow dynamics
- Influence of upstream wake
 - Radial distribution affected: more droplets at blade half radius
 - Large fluctuations in time due to low frequency wake oscillations

Future plans

- Include other forces (e.g. gravity)
- 2/4 way interactions
- Models for different icing conditions (instead of instantaneous droplet freezing)
- Account for the change in blade shape according to the amount of deposited ice
- Landscape effects