Simulations vs. measurements of supercooled clouds

Bjørn Egil Kringlebotn Nygaard Winterwind 2011

In-cloud icing

rime

Figure 6. Growth of rime ice (dry growth).

Recipe:

- Temperature below freezing point
- Liquid cloud droplets
- Wind

Icing intensity:

- Wind speed
- Liquid Water Content (LWC)
- Droplet size (MVD)
- Object size/geometry

Motivation

Simple experiment

- $\mathrm{LWC}=0.6 \mathrm{~g} / \mathrm{m} 3$
- Wind $=20 \mathrm{~m} / \mathrm{s}$
- $\mathrm{T}=-15^{\circ} \mathrm{C}$
- Icing time $=60 \mathrm{~min}$
- MVD $=10 \mu \mathrm{~m} \rightarrow 0.1 \mathrm{~kg} / \mathrm{m}$
- MVD $=50 \mu \mathrm{~m} \rightarrow 1.0 \mathrm{~kg} / \mathrm{m}$

Motivation

Simple experiment

- $\mathrm{LWC}=0.6 \mathrm{~g} / \mathrm{m} 3$
- Wind $=20 \mathrm{~m} / \mathrm{s}$
- $\mathrm{T}=-15^{\circ} \mathrm{C}$
- Icing time $=60 \mathrm{~min}$
- MVD $=10 \mu \mathrm{~m} \rightarrow 0.1 \mathrm{~kg} / \mathrm{m}$
- MVD $=50 \mu \mathrm{~m} \rightarrow 1.0 \mathrm{~kg} / \mathrm{m}$

Motivation

Motivation

- How well can LWC and MVD be predicted by a NWP model?
- How important is model resolution?
- computationally expensive
- Does cloud microphysics scheme play any role?

Model validation at Mt. Ylläs, N-Finland

-Mt. Ylläs: 719 m above sea level

Model validation at Mt. Ylläs, N-Finland

-Mt. Ylläs: 719 m above sea level

Overview of the 8 cases

TABLE 1 WEATHER DATA COLLECTED FROM THE YLLÄS TEST SITE.

	Date	$\begin{gathered} \text { Time } \\ \text { (UTC) } \end{gathered}$	Wind dir	Wind speed ($\mathrm{m} \mathrm{s}^{-1}$)	$\begin{gathered} \mathrm{T} \\ \left({ }^{\circ} \mathrm{C}\right) \end{gathered}$	$\begin{aligned} & \text { LWC } \\ & \left(\mathrm{g} \mathrm{~m}^{-3}\right) \end{aligned}$	$\begin{gathered} \text { MVD } \\ (\mu \mathrm{m}) \end{gathered}$
-1	08/2/1990	09	NW	6	-3	0.43	15.8
. 2	14/2/1990	06	SSE	4	-5	0.27	19.9
. 3	17/12/1990	12	SW	14	-4	0.25	15.3
. 4	08/12/1994	08	SSE	14	-5	0.40	14.3
- 5	12/12/1994	11	W	4	-6	0.09	13.7
-6	19/12/1994	11	SSW	22	-3	0.30	12.1
- 7	09/1/1996	11	SW	13	-5	0.30	12.2
- 8	10/1/1996	11	SW	20	-5	0.43	13.6

Methodology

- The non-hydrostatic NWP model WRF (version 3.1.1 ARW) is used
- Eight cases are studied
- Horizontal grid spacing of 9 km, 3 km, 1 km and $1 / 3 \mathrm{~km}$
- Vertical: 66 levels
- Initial fields and boundary data from ECMWFERA40
- Three cloud microphysical schemes
- Two sophisticated schemes; Thompson scheme \& Morrison scheme
- A more economical typical weather prediction scheme; EGCP01

Model setup

Yllästunturi in the finest mesh

LWC - Validation

-EGCP01 (Ferrier)

-Most efficient scheme

LWC - Validation

-Thompson scheme -19 \% more expensive

LWC - Validation

-Morrison scheme
 -31 \% more expensive

LWC - Validation

Mean Absolute Error

-EGCP01
-Morrison
-Thompson MAE $=0.08 \mathrm{~g} / \mathrm{m}^{3}$

Prediction of MVD

Predicted

[^0]
Prediction of MVD

$\mathrm{N}_{\mathrm{c}}=100 \mathrm{~cm}^{-3}$

Prediction of MVD

- N_{c} is far from being constant
- Better than constant MVD?
- Variation in N_{c} is probably much less for coastal sites

Prediction of MVD

Conclusions

- Good prediction of LWC is possible
- High resolution
- Detailed microphysics
- False alarm rate not studied
- MVD predictions not better than fixed value
- Prognostic droplet concentration in future microphysics schemes may improve icing predictions

[^0]: $\mathrm{N}_{\mathrm{c}}=$ Droplet concentration

