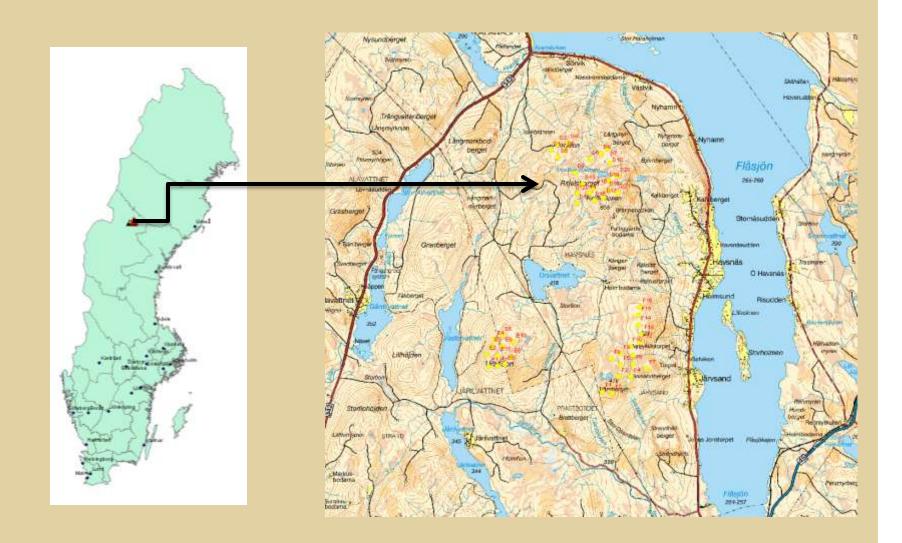
Havsnäs Research

ALAN DERRICK SENIOR TECHNICAL MANAGER With the assistance of: J Flowers, I Campbell, A Oram, D Noble, A Duckworth, L Legendre Swedish Energy Agency Pilot Grant Winterwind, Umeå February 2011

The Havsnäs Project


- 110 km North of Östersund, Jämtland (240km West of Umeå)
- Area of national interest for wind power.
- Spread over 3 hills.
- 510 to 650m asl
- Surroundings are lakes, marsh and forest.
- 48 x Vestas V90 on 95m towers
 - 45 x 2.0 MW + 3 x 1.8 MW
- Commissioned Summer 2010.

Awarded a Pilot Project grant by Swedish Energy Agency in 2009.

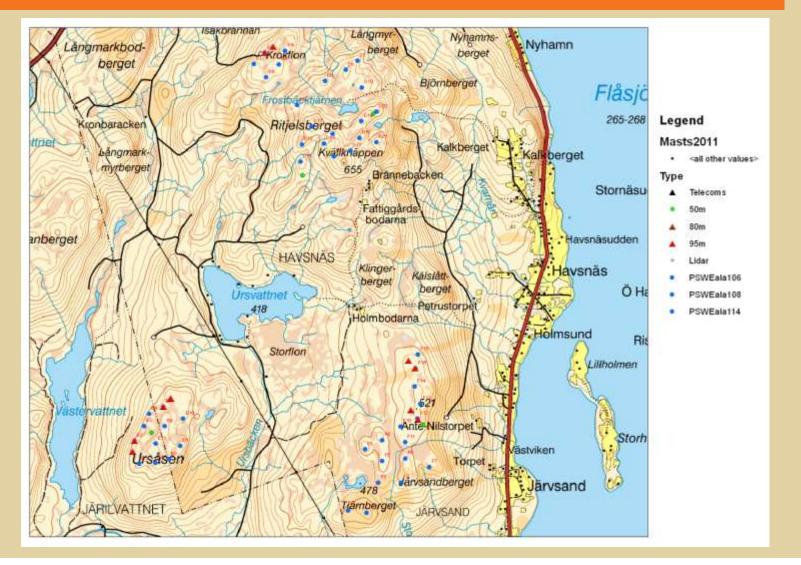
Havsnäs Site Location

Summary of R&D Sub-Projects In Progress at Havsnäs

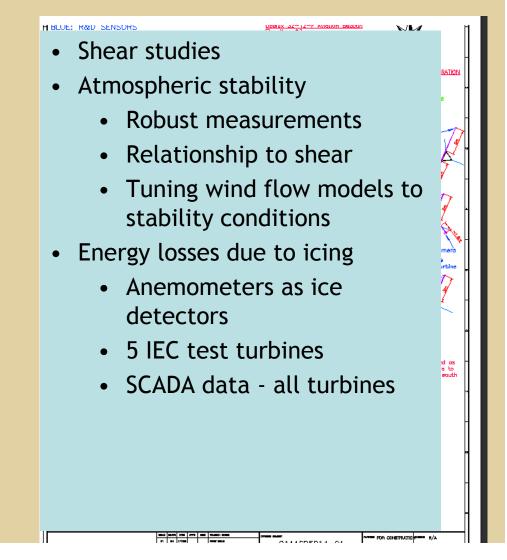
- Impact of shear extrapolation to hub height
 - Agreement between short (50m) and hub-height (95m) mast predictions
 - Impact of measurement heights on accuracy of derived shear profile
- Forest Canopy and Displacement Height
 - Use of Aerial Lidar Surveys to map tree heights/improve shear modelling.
- Shear Profiles Above Hub Height
 - Comparison of extrapolated and measured profiles; seasonal impact
 - Relating shear uncertainty to atmospheric stability indicators
- Wind Flow Model Validation and Tuning
 - linear models
 - CFD
 - Mesoscale
 - Tuning models to stability conditions

Summary of R&D Sub-Projects In Progress at Havsnäs (contd)

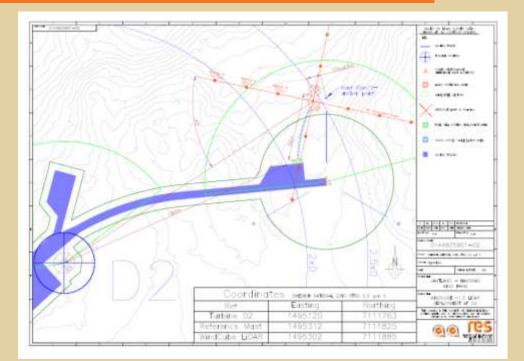
- Power Curves in Cold Climates
 - Power Curve Measurement using Rotor Averaged Wind Speed (Lidar)
 - Trialling of draft IEC 61400 12-1 rotor averaging procedures
 - Effect of ice on turbine and wind farm performance
- Remote Sensing
 - Testing of fuel cell lidar power supply in cold climate conditions
 - Practical implications of lidar measurements in cold climates
 - High shear/volumetric measurement error
 - Low temperature effects
 - Snow/rain/ice sensitivity
 - Lidar data availability


Wind Measurements at Havsnäs

- Wind measurements started
 November 2003
 - 4 x 50m masts, 1 x 80m mast
 - 1 x off-site telecoms mast with heated reference instruments from 2003 to present day.
- 10 x 95m masts installed Summer 2008 for site calibration
 - 5 removed pre-construction
 - 5 remain for power performance and R & D
 - 3 of 5 masts fully instrumented for research purposes Summer 2010.
- Leosphere Windcube Mark 1 lidar deployed for R & D.


Measurement Locations

95m R & D Measurement Mast (3 - off)


- Pairs of heated (WAA252) and un-heated (A100) Ano's at 3 elevations (with heated booms)
- Pairs of heated (WAV252) and un-heated (W200P) wind vanes at 3 elevations
- Ultrasonic aneometers at 2 elevations.
- Mast blockage anemometer pairs at one elevation.
- Temperature, pressure, humidity, solar radiation and rain sensors
- Web cam
- Permanent Mains Power!

Remote Sensing

- Leosphere Windcube V1
- Long-term shear measurements at power performance test turbine
- Ultimately to be mains powered from turbine
- Initially to be powered using novel Fuel Cell technology (hired)

NoM ---

10

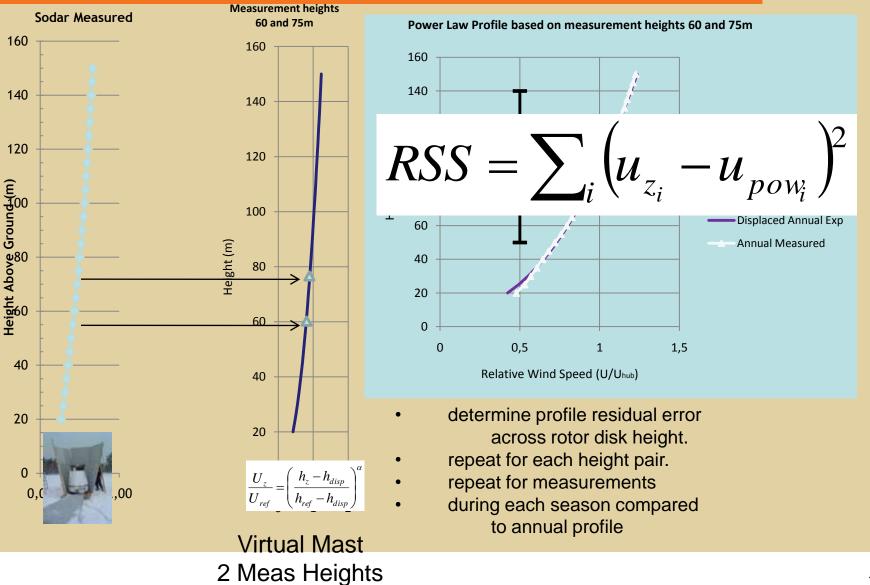
- Investigation of the impact of original 50m met mast based shear assumptions on energy yield prediction by implementing:
 - Wind resource predictions derived from 95m unheated power performance anemometers (missing winter data)
 - Wind resource predictions derived from new 95m heated anemometers (all year round data).
 - Lidar and 95m mast shear measurements to validate original 50m mast based wind shear assumptions.
 - Use of Lidar to measure the shear profile over the turbine rotor disk and to investigate the validity of the assumption of a power law profile over the entire rotor disk.

Vertical Wind Shear Profiles - How well de					95m Wind Speed Normalised wrt				
							Om Mast (sheared up to 9		
 Extrapolating wind spee Original site assessme New site calibration n 				(95m Wind Speed Normalised wrt Nearest 50m Mast (sheared up to 95m) Järvsandberget			ed	
						M279	M629	M630	_
		Wind	Wind Flow		edicted Speed:	1.00	1.08	1.08	н
		M((or	MCP Deri (original t		· ·	1.00	1.01	1.01	
N	N ((MCP Deri (Aerial Lid			1.00	1.02	1.03	
	∿ (A	(Ae MCP P	MCP Predict			5.3% 5.4%	5.1% 4.9%	5.1%	
			1	Ritie	in Stand of Stand	open Brann J Fatbool	ARCUATINET	Armenters Armenters Armenters Armenters Armenters	

	Ritjelsberget	Ursåsen	Järvsandberget
Relative Nett EnergyYield Difference			
E95m - E50m)/E50m:	-0.9%	1.4%	-0.1%

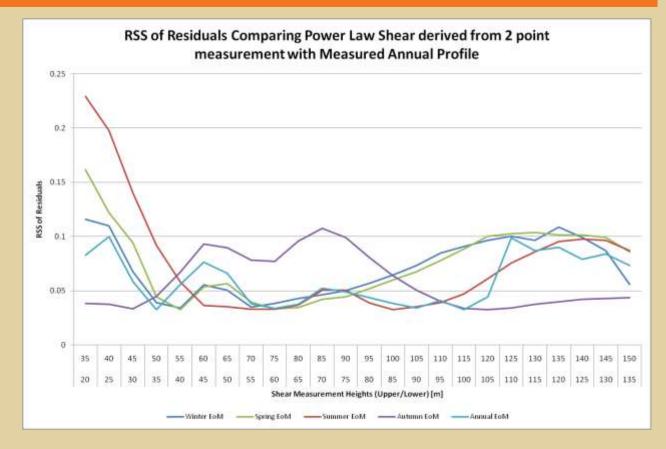
res

- Predicted wind speeds at 50m site assessment and 95m power performance masts
 - 50m and 95m masts not on same locations (separated by km's in some cases)
 - High uncertainty in wind speed model for point to point extrapolation
 - Direct comparison of wind speeds at masts not meaningful
- Energy Yield Analyses based on either 50m or 95m Masts
 - Uncertainties in wind flow model partially correlated across wind farm
 - Lower overall errors in wind farm energy yield
 - Good agreement (circa ±1%) between 50m and 95m mast based wind farm energy predictions
- Good spatial coverage of masts to counteract wind flow model uncertainties more important than hub height measurements
 - Assuming best practice applied in measurement and analysis.
 - Outcome of research will be to document best practice and improve understanding of failings of wind flow modelling in cold climate locations.



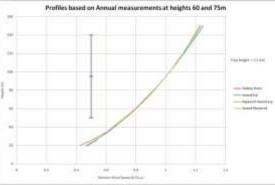
What impact does shear measurement height have?

- On 50m met mast we derive shear from 35m and 50m wind measurements, on 80m masts we derive shear from 50m and 75m measurements.
- Based on data from another site in Sweden where we have used remote sensing (Sodar) for more than a year:
- Sodar measurements at 27 heights between 20 and 150m



Comparison of Power Law and Measured Profile

Power Law Profile Residual Errors


- Power law profile less accurate if measurement heights too low or high.
- Seasonal effects can bias power law profile wrt annual profile.
- Can only confirm this with hind sight!

Power Law Profiles based on 2-Height Seasonal Measurements



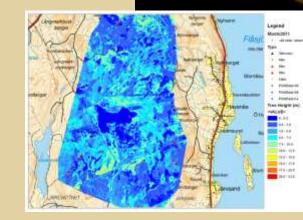
- Best-fit displaced power law profile does not necessarily match with physical forest height (11m).
- Profile error introduced by short-term measurements can be high.

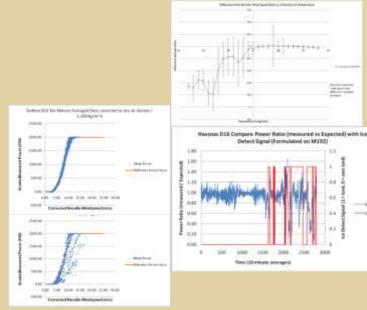
Energy Flux through Rotor - Seasonal Profiles Compared to Annual

- Consider kinetic energy profile (U³) rather than wind speed profile
- Often, what we lose below hub height, we get back above hub height
- But not always uncertainty remains.

Mast measured shear based on up to hub height measurements:

- Profile may deviate from power law above hub height > energy flux error
- Profile may not be a good fit to the power law > energy flux error
- Generally don't know if this is true for a specific site until you have a year of measurements
- Recommendation is to get at least a year of profile measurements.




- a more comprehensive set of met mast instruments to investigate and classify the atmospheric conditions dictating good/poor agreement between power law and actual shear profile
- Mast measurements at three separate locations providing more generic results.
- Profile measurements implemented using Lidar rather than Sodar to obtain measurements very close to a tall met mast.

Other Interesting things underway at Havsnäs

• Use of 3-D aerial lidar scan of forest height to optimise displaced shear profile model.

Ice detection and ice impact on power curve.

power for good