A Climatological Estimate of Icing Frequency at the Puijo, Finland Instrumented Tower

> Ben C. Bernstein Leading Edge Atmospherics

Jarkko Hirvonen Finnish Meteorological Institute

Photo by J. Hirvonen

LOWICE - A Quick Overview

- Climatological version
 - 10 wind farm sites, plus Puijo tower
 - Readily-available archives
 - Satellite data (Meteosat)
 - Surface observations
 - GFS model
 - Some detail in next slides
 - Blend data, identify...
 - Cloud presence, top, base
 - Cloud height relative to hub heights
 - Precipitation occurrence, type (FZDZ)
- Infer presence of icing
 - SLWC, Intensity
 - Ice Load, affect on power
 - Frequency

Data Sources

- SATELLITE: METEOSAT-8, -9 (geostationary)
 - Visible, Long- and short-wave IR
 - Pixels: 3.68 km x 12.26 km at 65°N
 - Map nearest pixel to Puijo site (+)
- SURFACE OBSERVATIONS:
 - 26 stations within 160 km of Puijo
 - Closest site: Kuipio (14 km)
 - Sky cover, Ceiling, Present wx (FZDZ)
 - Distance implies relevance
 - Timing of observations varies
- MODEL: GFS (Global Forecast System) analysis
 - 1° x 1° horiz, 25-mb vert, 6-hourly
 - 3-D fields: T, RH, winds
 - Spatial average of 4 nearest grid points
 - Column of data, vertically interpolate to site

Icing Assessment (brief)

- Is it cloudy in the column?
 - Rule-based system
- Find cloud base height
 - Nearest reported ceiling (Kuopio)
 - Assumes CBZ similar at Puijo (14 km)
- Is site within this cloud layer vertically?
 - Is site above cloud base?
 - Is it within ~100 m of cloud base?
 - Local variability. Save ΔZ .
- Temperature: cold enough for icing?
- If YES, then calculate LWC
 - Adiabatic assumption within cloud
 - Assign very low LWC below cloud, using ΔZ .
 - Deplete LWC when precipitation is present
- ICErate ≈ LWC * V * A (V=GFS wind; A=0.015 m²). Efficiencies set to 1
- 2005-2010 monthly % of all hours with "active icing"

Observations at Puijo Tower

- Observation tower Pujio, Finland
 - 306 m MSL (224 above nearby lake)
 - 75 m tower (381 m MSL)
 - Two ice detectors
 - Automated wx station (FD12P)
 - T, RH, Wspd/dir, vis, pres wx
 - Web-cam images (every 15 min)
- Numerous cases
 - 2009-2010 icing season
 - Ice observed by detectors & other fields
- For climatology, icing surrogate developed
 - Portin et al. (2009)
 - T<0°C and VIS<200m
 - Not perfect (Ex. light icing case)
 - VIS: tradeoff PODy and FAR
 - Reasonable for climatology
 - Updated for 2005-2010 (JH)

Comparison of Estimates

- JH results for 2005-2010 (black line)
 - NOT ABSOLUTE GROUND TRUTH!
 - Recall: VIS<200 misses light events
 - Bad VIS obs iced over (Jan '09,'10)
 - Patterns
- LOWICE results three versions
 - Standard (tan %SIGh)
 - Icing if CBZ at/above tower (blue)
 - Icing if SLWC \geq 0.1 gm⁻³ (green)
- Traces track nicely (peaks, trends)
- Normal LOWICE: Overestimate?
 - Includes many events w/CBZ>tower
 - Includes many low LWC events
- Eliminate events w/CBZ>tower: better
 - Recall: Kuopio only 14km away
- Eliminate events where SLWC < 0.1 gm⁻³ is expected
 - Very close match (black and green lines) differences in early 2008, 2010
 - Very light events, perhaps many missed by VIS<200m method

Implications and Conclusions

- Revision of VIS threshold for icing
 - Capture more light icing events
 - Test trade-offs, examine icing rates
 - VIS thresholds for LGT, MDT...
- Is standard LOWICE too aggressive?
 - Icing when cloud base above site
 - Minimum ΔZ of 100 m
 - When DIST(nearclg) = 0 km
 - Increases to 304.8 at 160 km
 - Account for variation in CBZ
 - Distance, steep terrain
 - Decrease smallest ΔZ to 0 m?
- Eliminate icing when SLWC < 0.1 gm⁻³?
 - Don't capture very light events do we want that?
 - Is LOWICE <u>over</u>estimating or is VIS<200 <u>under</u>estimating? Both? Neither?
 - More testing needed
- LOWICE seemed to do a good job

Questions?

Ben Bernstein, Leading Edge Atmospherics <u>icingweather@gmail.com</u>; +1-720-771-3324 Jarkko Hirvonen, Finnish Meteorological Institute jarkko.hirvonen@fmi.fi; +358-50-5230130