The use of high resolution prediciton models for energy asessment -challenges in cold climate

Outline

Control in a changing environment

Models and methods

Wind Resource Mapping

Net Production						
P99	P90	P75	P50			
233	265	279	298			

Challenges in cold climate

Industries and products

Industries Offshore **Renewables** Media Shipping Seaware Routing Wind energy assessment Internet Weather Portals MetOcean forecasting Services & Products PowerWeather Seaware EnRoute TV Weather services services Seaware EnRoute Live • Wind consultancy • Print Offshore Consultancy • Wind Forecasts Seaware LNG Live Telecom UK observation course Hydro Power Seaware Fleet Manager StormDrift Oilspill Seaware PVA Energy Consultancy • Extreme weather reports Aviation forecasting

Aberdeen

Copen-

hagen

Stockholm

Houston

Baku

Bergen

Stavanger

Oslo

StormGeo

A model approach to wind energy asessement

Numerical models

The atmosphere is divided into a mesh

The size of a grid box determines the accuracy of the model

The state in every grid box is calculated forwards in time base on numerical AND physical principles

The fundamental working tool: Numerical weather prediction models

Forecasting sources: Numerical prediction models

StormGeo has access to all important global models

StormGeo

The fundamentals working tool for weather forecasting: Numerical prediction models

Computer power increases numerical possibilities all the time -Models need to be tuned and improved

Control in a changing environment

- Weather classification (MIUU)

Long term corrections

- Observations
- ERA interim
- NCEP reanalysis

USGS landuse dataset vs Corine

- Very important for roughness felt by models

Difference in mean wind speed 70m for 2008: USGS – Corine 2000 dataset

Corine 2000: newer datdaset with higher accuracy

Local scale predictions

Nesting/downsacaling of models

StormGeo

Wind Energy asessment at StormGeo

The StormGeo Wind planner

StormGeo

- Virtual measurements
- Long term climatology– ERA interim
- Wake loss
- Effects from atmospheric stability
- Turbulence
- Icing
- Maintenance

Virtual Measurements

Atmospheric Hindcasts at StomGeo

Height corrections – Complex terrain

- Due to small scale terrain effects not catched by a 1 km model.
- Input:
 - Height of the model surface
 - Surrounding 'real' terrain
 - The exact altitude at the specified location
- This gives much more accurate wind speed estimates.
- The correction depends on model setup and type of terrain.

Long term corrections

- ERA interim and observations

Based on available measurements and ERA-interim

ERA-interim is a global dataset at 70km resolution from 1989-present with 3hour time resolution

The main advances in the ERA-Interim data assimilation compared to ERA-40 are:

12 hour 4D-Var

70 km horizontal resolution

New humidity analysis

Improved model physics

Data quality control that draws on experience from ERA-40

More extensive use of radiances, and improved fast radiative transfer model

http://www.ecmwf.int/res earch/era/do/get/erainterim

1999

2004

1996

2001

2006

2008

ERA interim Analysis

1989 – 2009 70 km resolution

Park Design in coorporation with Agder Energy

Screenshot from ParkDesign

Profitability versus risk as function of project size

Optimised layouts

Risk assessment

Investment analysis

Optimal layouts visualised in Google Earth

The effect of wakes

Wake loss on estimated energy production has been implemented into StormGeo planning software Ex: The wake loss is calculated for every time step of the whole hindcast period

StormGeo wind farm optimizer

			50	ark layout						
	[Note	that this is very co	mputer dema	nding stuff! Do not make mo	re t <mark>h</mark> an one request	at a time!]				
hoose Po	sition	s:			8	VAP W		3700	Nup	Salatite Terram
					\mathbf{T}	WEGHT.	HAR		-	
hoose hindcast:	-				€Ð	21/2-67		- Tal		
Aguer	19.66				· 🖳		The shall be		EA .	the Alleland
at / UTM Northin	ng: l	on / UTM Easting:	Altitud	e:	<u>H</u>			P Stor P and S	\$a???!!	and the second
0,99200200		13.029765150				6-5/2/11 C	学生で			
eo coordinates	are decima	I degrees, UTM co	ordinates are	in meter (ellipsoid WGS84)		1 12/09/1		烈。風心指	Step?	stars of the
vou're usina U	TM coordin	ates, the map won	't update until	the WRF data extract is		The state		2 m Is		
nished (~5 min)						13 825	RUNNE		Store 1	「「「「「「「」」
Add position						1 2 3		新生うの		
pload a text f	ile with co	ordinates, one p	air of 'lon.la	t.altitude' or	>	Le 2	William Reality	2 Ale		a subscription of the
itmE,utmN,alti	tude' on e	each line:				132	N AVS			N.>.
oordinate file:		(Bro	wse		2)	- 22				A
lub-height':		Zero Displacen	nent height for	forest:	0	Vana	Sh Sa			1/3
ub height can	be ~ 20-1	40 meters			-	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		Sol and the		11/2
MPORTANT! Re	comment	lations and infor	mation for e	ach hindcast!		1 And the				1121A
Toput coordin	atos in UT	M (default is googs	anhia coordina	tac)	- Acres	-1 12		Local T		113 A
	ates in on	a (default is geogr	aprile coordine	ics)	-R.		10775m			LEY.
Automatic he	ight correc	tion			· ·	8	CETERS		Engrand and	a la
						and the	20180125	mark to the server	700 -	
Output WRF	virtual mea	surments in WindS	Sim format		1 1			" " "		
nerav loss est	imates (%) used to get n	et energy pr	oduction (information):	33 . X	and the second second	Marin Strange			
	Vakaa.	Turbulanca	Floctricolu	Maintanancou		r they want				
L 4	fakes.	2	2	2	Sept on	N. N.	¥			
haasa Turbina.					7 PT . Pa.	she of	é	1	ŧ	
Siemens SWT 2	.3MW-101	*								

An improved wind farm planner

StormGeo Control in a changing environment

Long term climate

noose hindcast: / UTH NO

Add position

Net production

240	265	279	298
210	203	2/3	230

Annual Energy Production

Wake Loss

"Normal" winter climate in scandinavia

Dominated by Low pressure systems coming in from the west

Normally high average winds during Desember, January and February

Cold climate - the 2008-2009 winter

Cold arctic air masses over Scandinavia

Cold temperatures

Easterly winds over large parts of Scandinavia for long periods

High atmospheric stability and very low wind speeds and "nonlogaritmic" wind profiles. - ERA interim

StormGeo

Cold climate and energy asessment

Weather prediction models have a much higher possibility to capture real weather and real wind condtions

It gives a high probability to capture the effects of cold weather with higher air densisty and a stratified atmosphere and its effects on the wind fields

The stratification of the atmosphere is important for wind characteristics!

Non-logaritmic wind profiles based on model results

GEV correlation and linear regression based on sectors to better capture effects based on high atmospheric stability

The vertical wind profile from virtual measurements are used!

Control in a changing environment

Based on ERA-interim

10 years at 3km horizontal resolution: 2000-2010

Improve extreme value analysis and energy the uncertainty measures of energy estimates

