IWAIS 2015 - 16<sup>th</sup> INTERNATIONAL WORKSHOP ON ATMOSPHERIC ICING OF STRUCTURES Uppsala, Sweden June 28 - July 3, 2015 ## Expansion of the ice deposition monitoring network in Germany **Bodo Wichura** # Long-term ice deposition measurements were carried out at up to 35 stations in the east part of Germany during 1965-1990. In 1991 the number of locations with ice deposition measurements was reduced to a total number of five. Since 2005 additional ice deposition measurements have been available from a meteorological mast (three heights 10 m, 50 m and 90 m above ground) at Falkenberg, near the Meteorological Observatory Lindenberg of German Meteorological Service (DWD). ## The severe wet snow incident in November 2005 in the northwest part of Germany (Münsterland area) ... as well as the results of the European COST-Action 727 "Measuring and forecasting atmospheric icing on structures" gave convincing reasons for an expansion of the ice deposition monitoring network in Germany. Therefore, DWD started a project to implement the expansion of the network. **Fig. 1 – 3:** Timeline of the ice deposition monitoring network in Germany. Background color varies with altitude. See [1] for more information regarding Fig. 1 and 2, respectively. **Fig. 1 – 3:** Timeline of the ice deposition monitoring network in Germany. Background color varies with altitude. See [1] for more information regarding Fig. 1 and 2, respectively. **Fig. 1 – 3:** Timeline of the ice deposition monitoring network in Germany. Background color varies with altitude. See [1] for more information regarding Fig. 1 and 2, respectively. **Trigger Event:** Severe wet snow incident in November 2005 in the northwest part of Germany (Münsterland area). - more than 80 power line towers were damaged as a result of wet snow accretion on power line cables (see Fig. 3, [2], [3]), - due to the enormous economical impact of such damage the question arises as to how frequently similar climatic conditions may occur; such information forms the basis of structural design of power lines in areas prone to icing events, - statistics on ice loads are scarce since they are seldom measured routinely. Fig. 3: Damaged power line poles in Münsterland area on 26.11.2005 (Photo © DPA, 2005; see [2] and [3] for more information) **Trigger Event:** Results of the European COST-Action 727 "Measuring and forecasting atmospheric icing on structures" - a comparison of icing measurement devices was carried out at weather station Zinnwald during winter seasons 2007/2008 and 2008/2009 (see Fig. 4, for an example of results; [4], [5]), - the comparison campaigns were part of the COST-Action 727, - results of COST-Action 727 showed clearly the need of ice deposition measurements in order to monitor icing conditions for several applications [6]. Fig. 4: Time series of icing variables as the result of test measurements with different instruments at weather station Zinnwald during the winter season 2008/2009 (see [4], [5] for more information). The photographs were taken in order to illustrate the result of icing measurements (blue arrows). ### **Instrumentation:** Ice load sensor EAG 200 (as long as an adequate instrument will be available on the market) Deutscher Wetterdienst Wetter und Klima aus einer Hand - Pole diameter: 0,032 m, Pole length: 0,5 m - Pole material: PVC - Electro-mechanical scale - Measuring range: 0-10 kg - Resolution: 1 g, Accuracy: ± 50 g - Standard measurement height: 6 m above terrain\* - On pylons or platforms (if on-site already) - Measurement interval: 10 minute means - Installation at weather stations, i.e. the full meteorological measurement program is available as supplementary information <sup>\*</sup> notwithstanding [7] in order to continue long term measurements at similar heights at many sites in Germany, see [1] for more information) ### References: - [1] Wichura, B., 2007. A survey of icing measurements in Germany, 12th International Workshop on Atmospheric Icing of Structures (IWAIS2007), Yokohama, Japan, pp. 4. - [2] Wichura, B. and Makkonen, L., 2009. Evaluation of a Wet Snow Accretion model for the Münsterland event in November 2005, 13th International Workshop on Atmospheric Icing of Structures (IWAIS 2009), Andermatt, pp. 7. - [3] Makkonen, L. and Wichura, B., 2010. Simulating wet snow loads on power line cables by a simple model. Cold Regions Science and Technology, 61(2-3): 73-81. - [4] Wichura, B., 2009a. Intercomparison of icing measurements at Zinnwald test site, 13th International Workshop on Atmospheric Icing of Structures (IWAIS 2009), Andermatt, Switzerland, pp. 4. - [5] Wichura, B., 2009b. Zinnwald test site for intercomparison of icing measurements, 13th International Workshop on Atmospheric Icing of Structures (IWAIS 2009), Andermatt, Switzerland, pp. 4. - [6] Fikke, S. et al., 2006. COST Action 727: Atmospheric Icing on Structures; Measurements and data collection on Icing: State of the Art. Publication of MeteoSwiss, 75, Zürich, pp. 110. - [7] ISO 12494, 2001. Atmospheric icing of structures, International Organization for Standardization, Geneva.