

TAMPERE UNIVERSITY OF TECHNOLOGY

Research on icing behavior and ice adhesion testing of icephobic surfaces

<u>Christian Stenroos</u>¹, Heli Koivuluoto¹, Giovanni Bolelli², Riku Ruohomaa¹, Luca Lusvarghi², Petri Vuoristo¹

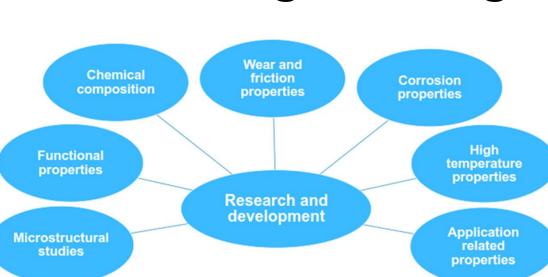
 ¹Tampere University of Technology (TUT), Department of Materials Science, Tampere, Finland,
²University of Modena and Reggio Emilia (UNIMORE), Department of Engineering "Enzo Ferrari", Modena ,Italy

Content

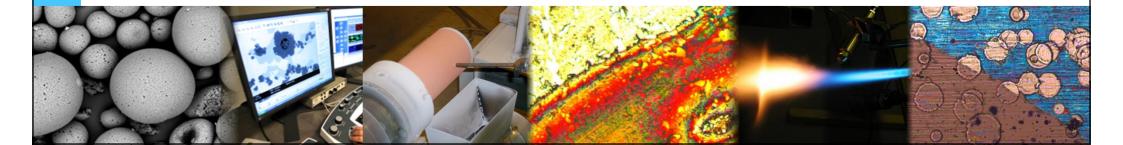
- Background
 - Introduction of TUT and Laboratory of Surface Engineering
- Aim of the work
- Testing equipment
 - Icing wind tunnel
 - Accretion of different ice types; Glaze and Rime
 - Centrifugal ice adhesion test
- Results
 - Ice adhesion
 - Connections to wettability and surface roughness
- Conclusions

Tampere University of Technology (TUT)

- Established in 1965
- Started operating in the form of a foundation in 2010
- ~10,000 students, ~2,000 employees
- Collaborates with 230 universities around the world
- Quality assurance system audited by The Finnish Higher Education Evaluation Council in 2014


Department of Materials Science (DMS)

- Internationally high-level know-how on all materials based on strong interdisciplinary basic research
- 9 professors: Metals, Ceramic Materials, Plastics and Composites, Fibre Materials, Paper and Packaging, Characterization, Tribology and Machine Elements and Surface Engineering


Laboratory of Surface Engineering

- Prof. Petri Vuoristo
- Personnel 15-20

• Research topics

- Thermal spraying (Thermal Spray Center Finland, TSCF)
- Thin film technologies
- Laser processing (Laser Application Laboratory, LAL)
- Icephobic coatings and surfaces (since 2013)
- Characterization and testing

Aim of work

Simulation of real icing conditions

- Ice accretions in icing wind tunnel
- Ice formation from microdroplets

Accretion of different ice types

• Glaze and rime ice

Behavior of different surfaces in icing conditions

• Wettability, surface roughness and material differences

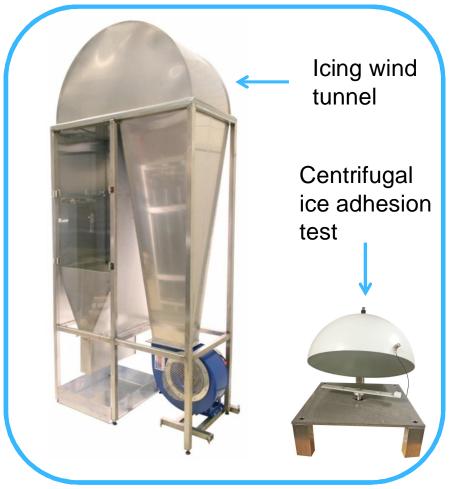
Measurement of ice adhesion

• Connections to CA, CAH and surface roughness

TAMPERE UNIVERSITY OF TECHNOLOGY

Testing equipment: Icing wind tunnel & Centrifugal ice adhesion test

Located in the climatic room


SITÀ DEGLI STUDI DI NA E REGGIO EMILIA

Testing equipment: Icing wind tunnel & Centrifugal ice adhesion test

Located in the climatic room

TAMPERE UNIVERSITY OF TECHNOLO

VERSITÀ DEGLI STUDI DI DENA E REGGIO EMILIA

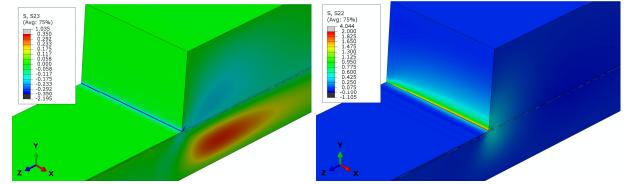
- Based on the description of Laforte & Beisswenger (ref1)
- Centrifugal force, provides shear stress, on the interface.
- Mass of the ice block is weighted and area of detached ice is measured
 - → Maximum adhesive shear strength can be calculated

Ref1. C. Laforte, A. Beisswenger, Icephobic Material Centrifuge Adhesion Test, International Workshop on Atmospheric Icing of Structures (IWAIS) XI, Montreal, June 2005, 4 p.

Icing wind tunnel: Parameters & Ice types

Parameter	Variable	Min	Мах	Unit
	P (Liquid)	0	6	bar
Nozzle	Q (Liquid)	0	0.3	l/min
parameters	P (Gas)	0	6	bar
	Q (Gas)	0	150	l/min
Volume median diameter	D(V0,5)	25	1000	μm
Flow velocity	V	0	25	m/s
Temperature	Т	0	-40	° C
Nozzle- specimen distance	н	0	1.9	m
Liquid water content	LWC	0	4.2	g/m³
Number of sample		0	9	pcs

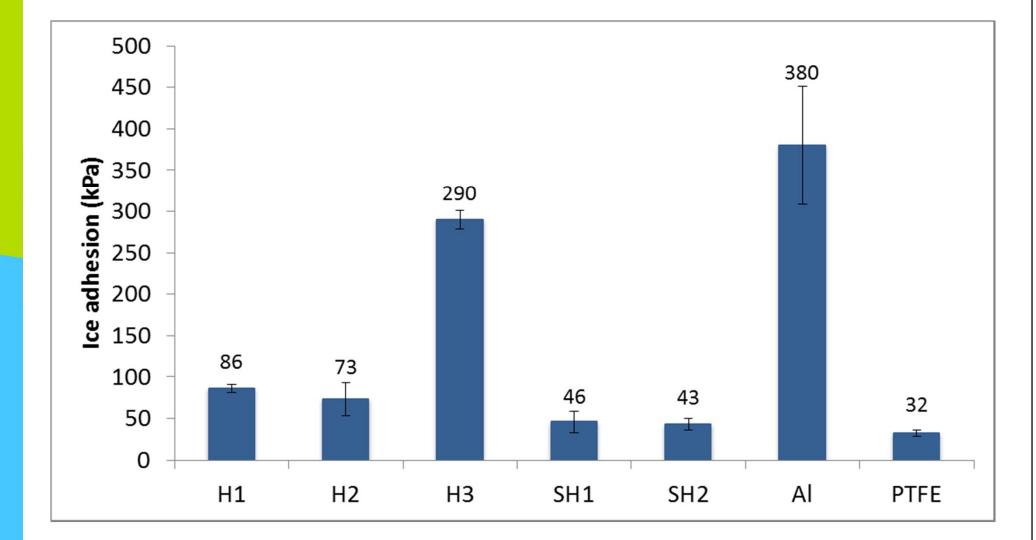
TAMPERE UNIVERSITY OF TECHNOLOGY


UNIVERSITÀ DEGLI STUDI DI MODENA E REGGIO EMILIA

Centrifugal ice adhesion test: Operating principle & modelling

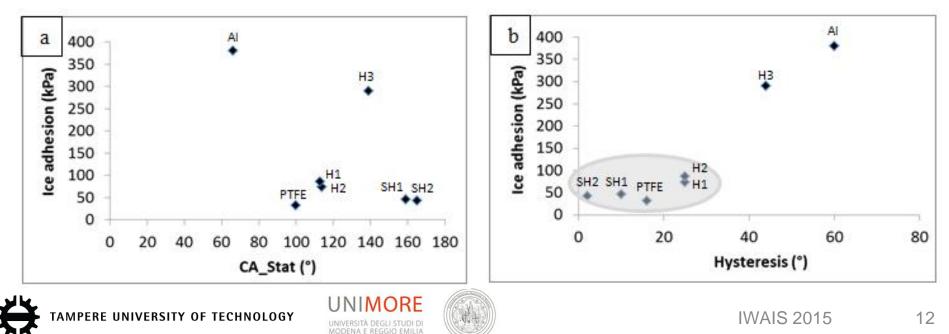
- Constant acceleration rate of 300 rpm/s untill ice detaches
- Ice detachment is observed with acceleration sensor

Materials and test methods

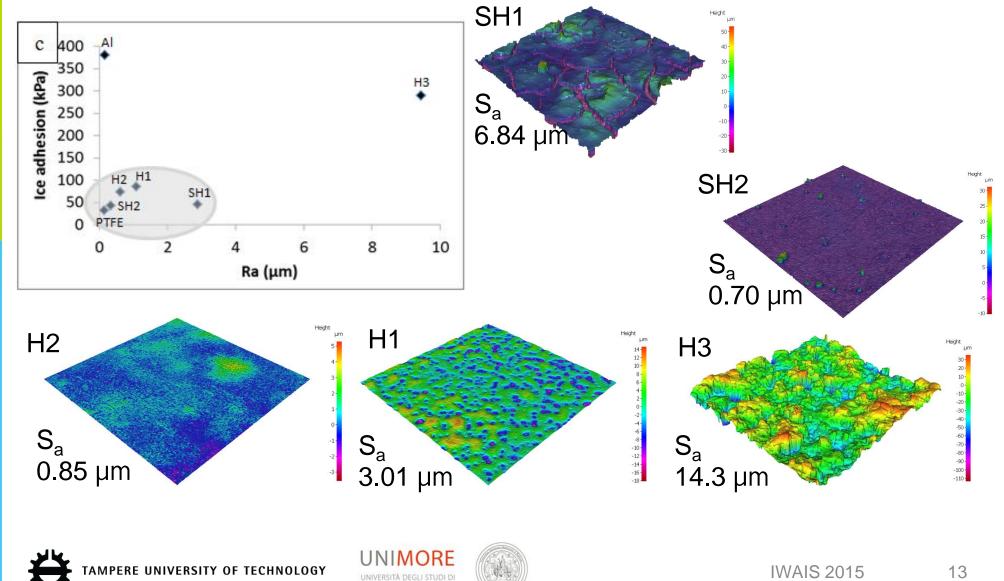

Sample	Coating/surface			
H1	PTFE-based hydrophobic coating, Alu Releco (FIN)	Testing		
H2	FEP-based hydrophobic coating, Alu Releco (FIN)	method	Measured variable	
H3	PTFE-based hydrophobic coating, CeraFlon, Alu Releco (FIN)	Contact angle measurement	Static and dynamic contact angles	
SH1	F-containing superhydrophobic hybrid coating, Millidyne (FIN)	Optical	3D-surface profiles, R _a and	
SH2	Superhydrophobic coating, Ultra- Ever Dry®	profilometer	S _a	
AI	Reference: Polished aluminium bulk surface	Centrifugal ice adhesion	Maximum shear adhesion strength	
PTFE	Reference: PTFE- tape, smooth surface			

Substrate: Polished stainless steel

Results: Ice adhesion



JNIMORE INIVERSITÀ DEGLI STUDI DI MODENA E REGGIO EMILIA



Wetting behaviour vs. Ice adhesion

increases	Sample	CA	Stat	CA_Adv	CA_Rec	Hysteresis
		(°)	(°)	(°)	(°)
	PTFE	100		108	92	16
	SH2	1	65	166	164	2
on	SH1	159		165	155	10
adhesion	H2	114		123	98	25
adb	P H1	1	13	116	91	25
e	H3	139		148	104	44
Ĥ	Al	66		80	20	60
Su	Superhydrophobic		H	ydrophobic	Hydrophilic	

Surface roughness vs. Ice adhesion

Conclusions

- Different ice types were created
 - Glaze and rime ice
- One factor alone can not explain ice adhesion behavior
 - Combination of surface roughness, wetting behavior and surface chemistry
- Next steps
 - Wear resistance vs. ice adhesion
 - Effect of different icing conditions

MPERE UNIVERSITY OF TECHNOLOGY

