TESTING SIX WET SNOW MODELS BY 30 YEARS OF OBSERVATIONS IN BULGARIA

Dimitar Nikolov¹, Lasse Makkonen² 1 - National Institute of Meteorology and Hydrology – Bulgarian Academy of Sciences, 2 - VTT - Finland

• Six simple wet snow accretion models are applied for simulations of well documented historical severe wet snow events in Bulgaria for the period 1969-1998.

• The data base consists of information about the diameters and masses, and thereof about the densities, of wet snow depositions in cases of damages on power lines.

Sampling and measuring procedure

The pictures are from the event on 02-03.02.1986 – the most sever wet snow case ever recorded in Bulgaria, mean radius – 6.1 cm, mean wet snow load – 6.5 kg/m.

• For all cases, it it is checked if the meteorological conditions correspond to the wet snow accretion criterion of Makkonen.

• The models used in this study are:

> the model of Admirat and Sakamoto (Admirat et all., 1986a and b, Admirat and Sakamoto, 1988a) - AS; \succ the model of Finstad et al. (1988); two model suggestions of Sakamoto and Miura (1993), S-M-1 and S-M-2; > the model of Makkonen (1989) and its improvement (Makkonen and Wichura, 2010) – LM and > one with the latest suggestion for the sticking efficiency of Björn Egil Nygaard et al (2013) -BEN.

The sticking efficiency according to some of the models

Change of α_2 according to the Finsrad model in the temperature interval 0-4°C for different wind speed and fixed conductor size (left) and for different diamters of the conductor at fixed air temperature(right).

The sticking efficiency according to some of the models

Sticking efficiency as function of air temperature for V = 2 m/s and P = 10 mm/h

α2 0.6 0.5 Td = 1 oC— Td = 2 oC 0.4 - --- Td = 3 oC - Td = 4 oC 0.3 0.2 Change of α_2 according to S-M-1 model with the wind speed for 0.1 different precipitation rates, $T_d = 4^{\circ}C$ -2 -1.7 -1.4 -1.1 -0.8 -0.5 -0.2 0.1 0.4 0.7 1 1.3 1.6 1.9 2.2 2.5 2.8 3.1 3.4 3.7 4 4.3 4.6 4.9 and fixed air temperature T = 1.2 °C temperature, oC $-P = 5 \, \text{mm/h}$ $_{2}$, T = 1.2°C, T_d = 4 °C 0.8 - 10 mm/ The curves for α_2 according to the S-M-= 15 mm/ł 0.7 P = 20 mm/1 model for four different upper P = 40 mm/0.6 P = 1 mm/htemperature limits 0.5 0.4 0.3 0.2 01 windsneed m/s

The sticking efficiency according to some of the models

• Change of α_2 according to the S-M-2 model with the temperature for D = 20 mm and different wind speeds (left) and with the temperature for V = 2 m/s and different diameters (right)

One example of the model simulations

Model results for case 2, 06-07.03.1984

The results are graphically summarized in the following six scatter plots

The influence of the data transformation

• All models, except for the S-M-1, undergo very low change with this transformation and the AS model even not any.

Table 1 Relative changes between the short and longdata sets for the first four cases (values in %)

AS	Finst.	S-M-1	S-M-2	BEN	LM
0.0	- 3.9	48.1	- 3.4	- 0.9	2.3

The influence of the chosen temperature limit

Estimated radiuses of the deposited wet snow in case 1 with the SM1 model for different upper temperature limits Td = 1, 2, 3 and 4 °C; long data set

Relative change of the estimated radiuses by the transormation from short to long data set for different temperature limits

It could be summarized that S-M-1 model is vastly sensitive to transformation of the input data, especially when the air temperature is close to the point of the maximum of α_2 for the selected Td.

The location of these points depends on the chosen upper temperature limit and this is another important sensitivity of the model.

The S-M-2 model is also influenced by the chosen Td but in much lower degree.

Conclusions

- The models with best performance seem to be AS and LM they both have relative good estimations of the measured values; both are not sensitive to the data transformation and they always have close results.
- However, they have some limitations:
- above 10 m/s the AS model underestimates the depositions;
- the LM model should be used carefully when fog is presented together with the snowfall.

• The BEN model usually gives overestimation but yields very good results for wet snow conditions accompanied by high wind speed.

- The S-M-1 model sometimes gives good results but is very sensitive to the meteorological input information and to the chosen temperature limit.
- The other two models (S-M-2 and Finstad) always underestimate the depositions, probably due to the very high dependency on the wet snow radius.