
Central Research Institute of Electric Power Industry

Development of snow accretion 
simulation method for electric wires 

in consideration of snow melting 
and shedding

Civil Engineering Research Laboratory

2015

16th International Workshop on Atmospheric  Icing of Structures

July 1, 2015

K. Ueno, Y. Eguchi, T. Nishihara, S. Sugimoto, H.Matsumiya

1



Objectives
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(1) CRIEPI have developed SNOVAL(Ver.2) (Snow accretion simulation code for overhead 

transmission lines) which can simulate the temporal change of three dimensional accreted 

snow shape under calm to strong wind in any direction, without solving air flow around 

snow deposit and trajectories of snowflakes before impact. SNOVAL(Ver.2) can estimate

the mass of accreted snow with arbitrary shape and electric wire rotation, in contrast to the 

existing cylindrical-sleeve accretion models.

(2) SNOVAL(Ver.2) has been improved to estimate:

・liquid water content (LWC) by considering melting process due to heat 

exchanges between the air, electric wire and snow deposit and melting 

of snowflakes below freezing level in the atmosphere,

・density of accreted snow as a function of wind speed and LWC of snow deposit,

・accretion factor as a function of wind speed, LWC of snowflakes before impact

and three dimensional snow accretion shape, 

・snow shedding based on the balance of forces and its related moments 

exerted on accreted snow with different shapes.

Reproduce the process from the start of snow accretion until snow shedding

snow cap axial growth cylindrical growth

SNOVAL

(Ver.3)



Framework of SNOVAL(Ver.3)
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Snow accretion growth
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Electric wire rotation
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Equation for electric wire rotation angle 

Spatial
discretization

Galerkin finite element method

Time integration Crank-Nicolson method

Iteration Newton-Raphson method
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Melting of snow deposit and LWC
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Heat exchanges between air, electric wire and snow deposit
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Density of accreted snow
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Density vs. LWC of snow sample（Hefny2009）Density vs. wind speed (Sato2014)
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Accretion factor
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Adhesive strength of wet snow
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Wet snow shedding

2015 10

Gravitational force[N/m]

)23(R2)t(

Rd)cos()t()t(f

0tad

2

tadtad

0



 




g)t(m)t(f sg 

Criterion 2: Moment due to gravity and wind force exceeds 

moment due to shear adhesive force 

Moment due to gravity[Nm/m]

 



Rd)t(R)t(M

2

1
sadsad

)t(f)t(f tadg 

)t(sin)t(r)t(f)t(M cgcggg 

Criterion1: Gravitational force exceeds tensile adhesive force

Tensile adhesive 

force[N/m]

Moment due to 

wind force[Nm/m] )t(cos)t(r)t(f)t(M cgcgww 

)t(M)t(M)t(M sadwg 

Moment due to 

shear adhesive force[Nm/m]

)t(DC)t(v
2

1
)t(f sd

2

yaw Wind force[N/m]

Drag coefficient

The time of wet snow shedding is numerically determined from the point where either criterion 1 

or criterion 2 is satisfied.



Conductor samplers supported by wires
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Acquisition of meteorological data of wet snow event and snow accretion data on 

conductor samplers with different size, torsional stiffness, and orientation
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Wet snow event and analytical condition
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Meteorological data at Kushiro in Japan  

on April 21, 2013

Conductor sampler spec and analytical condition

Sampler1 Sampler2

type ACSR240mm2 ACSR810mm2

Sampler length Lx 2[m]

Sampler diameter 0.0224[m] 0.0384[m]

Torsional stiffness GJ 68.8[Nm2/rad] 588[Nm2/rad]

Equivalent span length 2L 90[m] 300[m]

Torsional spring constant 0.0680[Nm/rad] 0.0523[Nm/rad]

Azimuth π/8

Drag coefficient Cd 1

Space division Axial direction:10
Circumferential direction: 720

Time division 1[s]

Time step 36000

height of atmosphere 250[m]

Initial radius of snowflake 0.005[m]

Parameter in snow density = 500[kg/m3]

Maximum of tensile
adhesive strength

=300, 360[N/m2]

Maximum of shear
adhesive strength

=150, 220[N/m2]
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Accretion on sampler1 (development on windward side)
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Observation Simulation
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(1) Although the precipitation is observed from 14:50,

snow accretion does not occur until 15:40 because LWC 

of snow deposit is over 0.4 and hence adhesive force is zero.

SNOVAL ver.3 can predict the start time of snow accretion. 

(2) Snow shedding starts at 20:30 and mass of accreted 

snow gradually decreases due to partial shedding.

Snow shedding model in SNOVAL ver.3 is based on 

shedding all at once and hence cannot treat partial shedding. 

start

rotation of 90[deg]

snow shedding
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Accretion on sampler2 (close to cylindrical-sleeve shape)
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Observation Simulation

16:00
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23:20

LWC of snowflakes and snow deposit is very sensitive to

temperature variation. Density is mainly correlated with LWC.

start

rotation of 180[deg]

snow shedding
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Conclusion and future works
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(1) SNOVAL(Ver.3) reproduced the start time of snow accretion and the temporal 

change of mass and shape of accreted snow, electric wire rotation consistent 

with field observations for conductor samplers. An calibration method was 

employed to find appropriate values of parameters in accretion factor allowing 

for the best agreement between calculated and observed mass of snow deposit 

in some Japanese wet snow events.

(2) The time of snow shedding strongly depends on the tensile and shear adhesive 

strength. It is necessary to estimate these strength experimentally for various

LWC and density of snow deposit, different surface roughness of materials and 

initial compressive stress.

(3) Employing many wet snow events, the versatility of proposed accretion factor 

and density must be enhanced to improve the accuracy in the estimation of 

accreted snow load currently used.

(4) Effects of solar radiation and heat generated by electric current on

LWC of snow deposit and snow shedding must be incorporated in SNOVAL(Ver.3). 


