

MuVi

A Hybrid Prototype of Atmospheric Icing Sensor

Umair Najeeb Mughal & Muhammad Shakeel Virk

Atmopsheric Icing Research Team Deptt. Of Indutrial Engineering, Narvik University College 8505-Narvik, Norway Email : unm@hin.no

29 June – 3 July, IWAIS 2015, Uppsala, Sweden

My Today's Talk Will Comprise

Motivation/Need

Available Sensors for Atmospheric Ice

Testing

1st Prototype Design

29 June – 3 July, IWAIS 2015, Uppsala, Sweden

Motivation

- Atmospheric ice effects
 - Static loads
 - Dynamic loads
 - Wind interaction with iced structures
- Critical parameters for de icing and anti icing
 - Ice thickness
 - Ice deposition rate
 - Ice type
 - Ice load
 - Melting rate
- Problem with present sensing techniques
 - Loading errors
 - Multifunctionality
 - Redundancy
 - Robustness
 - Point devices

HoloOptic Icing Sensor

Magenheim Microwave Technique

Patents/Available Sensors	Ice Detection	Ісе Туре	Ice Thickness	Icing Rate	Ice Load
Capacitive Based Techniques					
Ice sensor by Weinstein	Х		Х		
Ice sensor by Kwadwo	Х	Х	Х		
Ice sensor by Jarvinen	Х	Х	Х	Х	
	Ultrasc	onic Based Techniq	ues		
Ice sensor by Luukkala	Х				
Ice sensor by Watkins	Х				
	Resona	ince Based Technic	ques		
Ice sensor by Cronin	Х				
Ice sensor by Koosmann	Х				
	Microv	wave Based Techni	que		
Ice sensor by Overall	Х				
Ice sensor by Magenheim	Х				
	Impeda	ance Based Technic	ques		
Ice sensor by Seegmiller	Х		Х		
Ice sensor by Wallace	Х		Х		
Infrared Based Technique					
Holo optic sensor	Х	Х		Х	
Load cell Based Technique					
Ice Moniter	Х			Х	Х
Ice Meter	Х			Х	Х
Hybrid (Rotary Loading and Capacitive Loading)					
MuVi (prototype by NUC)	Х	х	х	Х	Х

Conceptual Design

29 June – 3 July, IWAIS 2015, Uppsala, Sweden

Proposed Skeleton

Achieving Adequate Rotational Loading for Icing Load

Motor Selection (Stepper or Servo)

Advantages to use Stepper Motor

- Avoid complex steady state errors,
- Avoid stability problems
- Avoid Amplication of dynamic wind loads on iced structure
- No closed loop push/pull characteristics as like servo motor
- Possiblity to be in closed loop by an encoder
- More robust in Cold Climate

Mathematical Modeling

$$J = \frac{\alpha V_{in} I_{in} - \eta}{\beta \gamma \Omega_m^3} = a I_{in} - b$$
 J-I Relation
m-I Relation

$$m_{ice} = \frac{a}{R_{ice}^2} \delta I_{in(ice)} + \frac{aI_{in} - J - b}{R_{ice}^2} = A \delta I_{in(ice)} + B$$

Open Loop Characteristics

Closed Loop Characteristics

Proposed Skeleton

Debye Relations for the Parameters of Interest

Dielectric constant of pure ice (Experimental results)

$$\begin{aligned} \tau_0 &= \tau_h e^{\frac{H}{kT}} \\ \varepsilon_r' &= \varepsilon_{r\infty}^T + \frac{\varepsilon_{rs}^T + \varepsilon_{r\infty}^T}{1 + \omega^2 \tau_h^2 e^{\frac{2H}{kT}}} \\ \varepsilon_r'' &= \frac{(\varepsilon_{rs}^T - \varepsilon_{r\infty}^T) \omega \tau_h e^{\frac{H}{kT}}}{1 + \omega^2 \tau_h^2 e^{\frac{2H}{kT}}} \end{aligned}$$

$$\begin{split} \varepsilon_{r\infty} &= \text{Relative Permittivity at Very High Frequency} \\ \varepsilon_{r0} &= \text{Relative Permittivity at DC Value} \\ \omega &= \text{Excitation Frequency} \\ \tau_0 &= \text{Relaxation time} \end{split}$$

ref : The dielectric properties of ice and snow Kuroiwa 1956

Dielectric constant of soft snow

Dielectric Mixture Formulae

$$\frac{\varepsilon_m - 1}{\varepsilon_m + u} = (\rho) \frac{\varepsilon_1 - 1}{\varepsilon_1 + u} + (1 - \rho) \frac{\varepsilon_2 - 1}{\varepsilon_2 + u} \qquad \text{Wiener relation}$$

' ϵ_{m} ' is the dielectric constant of the mixture, ' ϵ_{1} ' and ' ϵ_{2} ' are the dielectric constants of two materials, ' ρ ' is the proportion of the total volume occupied by medium '1', u is the Formzahl number

$$\varepsilon_{d}^{'} = \frac{\left(\rho u - u - \rho u \varepsilon_{ice}^{'} - \varepsilon_{ice}^{'}\right)\left(\rho \varepsilon_{ice}^{'} - \rho - u - \varepsilon_{ice}^{'}\right) - \left(\rho \varepsilon_{ice}^{''} - \varepsilon_{ice}^{''}\right)\left(\rho u \varepsilon_{ice}^{''} + \varepsilon_{ice}^{''}\right)}{\left(\rho \varepsilon_{ice}^{'} - \rho - u - \varepsilon_{ice}^{'}\right)^{2} + \left(\rho \varepsilon_{ice}^{''} + \varepsilon_{ice}^{''}\right)^{2}}$$
Atmospheric Ice Relation

$$\varepsilon_{d}^{"} = \frac{-\left(\rho u - u - \rho u \varepsilon_{ice}^{'} - \varepsilon_{ice}^{'}\right)\left(\rho \varepsilon_{ice}^{"} - \varepsilon_{ice}^{"}\right) - \left(\rho \varepsilon_{ice}^{'} - \rho - u - \varepsilon_{ice}^{'}\right)\left(\rho u \varepsilon_{ice}^{"} + \varepsilon_{ice}^{"}\right)}{\left(\rho \varepsilon_{ice}^{'} - \rho - u - \varepsilon_{ice}^{'}\right)^{2} + \left(\rho \varepsilon_{ice}^{"} - \varepsilon_{ice}^{"}\right)^{2}}$$

Analytical Model - Conductivity Relation for Atmospheric Ice

Parameter	Value	Ref
C_{∞} E_{∞}	1.6x10 ⁶ S/m 0.57 eV	[5]
σ _∞ (@ 0⁰C, 10kHz) E _∞ (@ 0⁰C, 10kHz)	(4.47±0.14) x10 ⁻⁵ S/m (0.56±0.004) eV	[6]
ರ್ _s (@ 10ºC) E _s (@ T > 40ºC)	(1.1±0.5)x10 ⁻⁸ S/m (0.34±0.02) eV	[4]

UDR: Conductivity Relation

 $\sigma(\omega) = \sigma_0 + A\omega^n$

However it is found that

 $\sigma_0 = f(\sigma_s, \sigma_\infty)$ A = g (σ_s, σ_∞) n = f(T) [0,1]

Experimental results of Fujino [10] for Conductivity variation with frequency and temperature for pure ice

12

$$\sigma(\omega,T) = C_s e^{(-E_s/kT)} + \left(C_{\infty} e^{(-E_{\infty}/kT)} - C_s e^{(-E_s/kT)}\right) \left(\frac{\omega}{\omega_p}\right)^{\frac{T - T_{cuttoff\,1}}{T_{cuttoff\,2} - T_{cuttoff\,1}}}$$

Preliminary Design

MuVi-Graphene Paper Sketch

MuVi Graphene – Atmospheric Icing Sensor

Rotor

Capacitive

Card

Capacitive

Card

14

with Deliverables

CFD Simulations of Atmospheric Ice on Rotating Hexagon with six capacitive plates

(10hours Simulation Time with Rime Ice)

CFD Simulations of Atmospheric Ice on Rotating Circle with four capacitive plates (10hours Simulation Time with Rime Ice) **Orignal Un-iced Profile** Orignal Un-iced Profile Profile - 2 Hour ed Profile - 2 Hours ed Profile - 4 Hour ofile - 6 Hour ed Profile - 4 Hour ed Profile - 8 Hours Iced Profile - 6 Hours ed Profile - 10 Hour ed Profile - 8 Hours Iced Profile - 10 Hours Collection efficiency-Droplet

$$D = \varepsilon_0 \varepsilon_r E$$

Atmospheric Ice Type	Electric Field Intensity [V/m]	Displacement Field [C/m ²]
Glaze Ice	154	5.49x10 ⁻⁹
Dry Snow p=0.8	154	3.88x10 ⁻⁹
Dry Snow ρ=0.4	154	2.76x10 ⁻⁹

Glaze Ice

Dry Snow $\,\rho\text{=}0.8$

Dry Snow ρ =0.4

Proposed Skeleton

E – Driven Technology

Detail Design

Rotary Shaft

Slip Ring

Central Unit for electronics

Step Motor

Step Motor Unit

Sensor base

(c) Manufactured Controller Compartment

(e) Manufactured Rectangular Rotary Part

(d) Manufactured Circular Rotary Part with Plates

(f) Manufactured Hexagonal Prism Rotary

(b) Manufactured Complete Sensor with Circular Top

Experimentation

Cryospheric Environmental Simulator @ NIED, Shinjo, Japan

Cryospheric Environmental Simulator @ NIED, Shinjo, Japan

Eilivi	Specifications			
Facilities	Variables	Limitations	Comments	
General Conditions in the Cold Room	Temperature	$-30^{\circ} \rightarrow +25^{\circ}$	_	
General Conditions in the Cold Room	Other Facilities Available	Microscope, thermal imager, high speed video camera, etc		
Snowfall Machine A	Snowfall Intensity	0 - 1[mm/h]	water equivalent	
	Crystal Type	Dendrities	$0.5 \rightarrow 5[mm]$	
	Area	$3 \times 5[m]$	_	
Snowfall Machine B	Snowfall Intensity	0 - 5[mm/h]	water equivalent	
	Crystal Type	Sphere	Diameter 0.025[mm]	
	Area	$3 \times 5[m]$	_	

Experimental Setup

Icing Experimental Conditions

Experimental Setup		
Condition/Variables	Specifications	
Experimental Facility	CES Icing Wind Tunnel	
Sensor	Rotating circle with plates	
Ісе Туре	Rime	
Droplet Spectrum	Fine mist $(10 \rightarrow 100 [\mu m])$	
Liquid Water Content ¹	$0.5 \rightarrow 0.1 [g/m^3]$) (see Fig. 6)	
Tunnel Temperature	-15° [C]	
Time of Experiment	110[min]	
Wind Speed	10[m/s]	

Additional Current – Additional Mass (δΙ-δm Curve) on MuVi in Icing Conditions

Experimental Conditions in Snow Simulator

Condition/Variables	Specifications
Snow Type	Snow Type A Dendrities
Crystal Size	$2 \rightarrow 3[mm]$
Sensor 1	Rotating hexagon with plates
Sensor 2	Non rotating cylinder
Sensor 3	Freely rotating IceMonitor
Distance from blower	277[cm]
Effective wind speed	3.5[m/s]
Cold Room Temperature	$-10^{\circ}[C]$
Time of Experiment	210[min]

Snow tunnel Experiments

29 June – 3 July, IWAIS 2015, Uppsala, Sweden

Additional Current – Additional Mass (δI - δm Curve) on MuVi in Snow Conditions

Detecting Icing Event, Type and Melting Rate Using Mutual Charge Transfer Scheme

(a) 5mm pure Ice over electrode

(b) Ice delta value observed

Detecting Ice Using Mutual Charge Transfer Scheme

(a) Ice layer removed leaving behind water puddle

(b) Increase in Delta rate

Detecting Ice Melting Using Mutual Charge Transfer Scheme

29 June – 3 July, IWAIS 2015, Uppsala,

Sweden

Detecting Icing Event, Type and Melting Rate Using Mutual Charge Transfer Scheme

Conclusion

- 1. Direct measurement techniques of atmospheric ice provides a suitable margin for the development a multipurpose atmospheric icing sensor
- 2. We have utilized forced roation to measure icing load and icing rate. Also by using forced rotation we were able to see reasonable uniform distribution of ice and snow on the rotary unit.
- 3. Using Mutual Charge Transfer technique we identified icing type and measured melting rate.
- 4. For ABS we are interested to test the feasibility of resistive Foils (e.g. CuNi44) for de-icing the sensor.
- 5. Presently it is a first prototype, hence it have some errors associated with it on which we are working to make it suitable to meet the industrial demands.

I appreciate your attention

I am now open for all questions

ACKNOWLEDGMENT

The work reported in this paper was partially funded by the Research Council of Norway, project no. 195153 and partially by the consortium of the ColdTech project - Sustainable Cold Climate Technology.