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Abstract:  In cold seasons, irregular layers of atmospheric
ice (AI) are usually accreted on the rotor blades of operat-
ing wind turbines. For smart, energy-efficient deicing, ice-
detection systems should not only detect the AI-layer on the
blade skin (BS) but also provide the “landscape” of the
material parameters of this layer over the BS surface, which
generally vary in time. The work considers a passive sensing
with wireless lowpass single-axis accelerometers, which are
located at the centers of the mutually non-intersecting low-
curvature disk-shape regions on the inner surface of the BS
and measure acoustic accelerations normal to the surface.
They include the acoustic component caused by the operati-
onal load in the BS. The work deals with this component
only, and develops acoustic model and method for identifi-
cation of the AI-layer parameters. The model is based on
the third-order acoustic PDEs originating from the derived
acoustic partial integro-differential equation, which in-
cludes the Boltzmann superposition integral with the relat-
ed stress-relaxation function. The method can identify the
following eight parameters: the thickness, volumetric mass
density, bulk and shear moduli, stress-relaxation time, po-
rosity, as well as volume and shear viscosities. The identifi-
cation method is computationally efficient and can be suit-
able for implementation in the real-time mode. The propos-
ed identification model and method enrich the scope of
structural health monitoring of systems with the identifica-
tion of material parameters of the thin-layer components.
The work also suggests a few directions for future research.

Keywords: blade of the operating wind turbine rotor,
atmosheric ice, ice detection for smart deicing, third-order
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LEGEND AND ABBREVIATIONS

AI Atmosheric Ice
IDS Ice-Detection System
BS Blade Skin
SRT Stress-Relaxation Time
NEC Non-Equilibrium Component
ANS Average Normal Stress
TPD Thin Planar Disk
PC Personal Computer
FD Finite Difference
PDE Partial Differential Equation
SRF Stress-Relaxation Function
ODE Ordinary Differential Equation 

INTRODUCTION

In cold seasons, irregular layers of atmospheric ice (AI) are
usually accreted on the outer surfaces of the wind turbine rotor
blades. These layers can cause unexpected down times and in-
crease the maintenance cost, thereby reducing the energy-pro-
duction efficiency. AI presents an unpredictable mixture of
crystalline and amorphous ice including such forms as dense
snow frozen to the surface, soft rime, hard rime, clear ice, and
glaze (e.g., [1], [2]). The parameters of the AI-layer (e.g., the
thickness, mass volumetric density, porosity, elastic moduli,
viscosities, and stress-relaxation time) vary from a half on order
to a few orders depending on the parameter (e.g., [3]–[5]).

For smart, energy-efficient deicing, ice-detection systems
(IDSs) should not only detect the AI-layer on the blade skin
(BS) but also provide the “landscape” of the material parame-
ters of this layer over the BS surface, which generally vary in
time. Consequently, the IDS development should deal with the
following main features.

(1) The operational load in a BS creates irregular space-time
distributions of material variables (e.g., strain, stress, and
displacement) which depend on the acceleration, decelerati-
on, speed of rotation of the rotor, the blade-pitch angle, the
wind, the presence of the AI layer on the skin, and other
factors. The corresponding experimental data are well do-
cumented (e.g., [6, Figs. 6–9], [7, Fig. 8 and Fig. 10(b)]).

(2) The BS-layer is of a complex, curvilinear shape that, in the
course of the rotor operation, varies in space and time. This
feature is also well documented (e.g., [6], [7]).

(3) The AI stress-relaxation time (STR) can be in an interval of 
a few orders (e.g., [3]–[5]).

(4) The aforementioned time-varying “landscape” of the AI-
layer parameters should be identified with an appropriate
acoustic model from the results measured by the IDS sen-
sors, which are located on the inner BS surface and wire-
lessly controlled by a computer and gateways in the real-
time mode.

Thus, the model and identification method are in the focus
of the IDS development. The present work proposes acoustic
model and method for identification the AI-layer parameters.
The method uses the results of [8] and can estimate the follow-
ing eight parameters: the thickness, mass density, bulk and
shear moduli, STR, porosity, and volume and shear viscosities.

Due to the above Point (1), the identification method pre-
sumes passive rather than active sensing. The method is based
on measurements of the acoustic accelerations at different
points on the inner surface of the skin. (The acoustic accelerati-
on is understood as, loosely speaking, the difference between



the total acceleration and the acceleration of the macroscopic
motion.) The challenge in Point (2) is met by the extending the
thin-planar-disk approximation introduced in [8] from a single
solid layer to the two-layer sys-tem of the BS/AI layers. The
features in the above Points (3) and (4) are allowed for by the
corresponding generalization of the viscoelastic model
developed in [8] and preceded in [9]. The model is based on a
partial integro-differential equation for the non-equilibrium
component (NEC) of the average normal stress (ANS) derived
in [8, Sections 2 and 3]. The proposed identification method is
computationally efficient and suitable for the use indicated in
Point (4).

1. ACOUSTIC MODEL FOR THE BS/AI-LAYER SYSTEM

The model developed in [8] and generalized below is based
on the thin-planar-disk (TPD) approximation, which is intro-
duced in [8, Section 3] for the case of a single layer. This
approximation presumes that:

• a major part of the space-time varying curvilinear skin of
the operating blade with the AI layer accreted on its outer
surface can be approximated with a set of mutually non-
intersecting planar disk-shaped cylinders, briefly, disks;

• in each disk, the thicknesses of the BS- and AI-layers 
and  are independent of the location on the disk surface;

• each disk is thin in the sense that

(1.1)

where  is the radius of the disk. Thus, the radiuses of all
disks should be sufficiently small in order to allow the
above planar-disk approximation and sufficiently big in
order to enable inequality (1.1) for each disk to hold.

At the center of each disk on the inner surface of the BS 
layer, one attaches a wireless lowpass single-axis acoustic ac-
celerometer measures the acoustic acceleration, which is nor-
mal to the surface. This acceleration is caused by the operation-
al load in the layer. The accelerometer network can wirelessly
be controlled by a personal computer (PC) and a gateway in the
real-time mode. For better energy efficiency, this network
should be endowed with wireless acoustic energy harvesters.
The time developments of the accelerations measured at the
point of the accelerometer locations are transmitted to the PC
where the acoustic accelerations form the time-varying “land-
scape” of the data over the entire part of the two-layer-system
surface represented with the TPD approximation. The PC by
means of the acoustic model and identification method describ-
ed below transforms these data into the space-time heterogene-
ous values of the AI-layer parameters

The model and method are the same for each disk. They
apply the input data listed in Table 1.1.

Remark 1.1. As is well known, physical quantities at equilib-
rium are independent of time. The present work only considers
materials, which are at equilibrium also independent of space.
The equilibrium versions are denoted with the sign “overline”
applied to the notation of the corresponding quantity (e.g., see
the related notations in Table 1.1). G

As is shown in [8, Section 3], the above TPD approximati-
on allows reduction of the model for a thin planar disk in three
spatial dimension to the model in one spatial dimension, along
the axis perpendicular to the disk, say, the -axis. Without a
loss of generality, one can consider that the inner surface of the
BS-layer corresponds to value  and the -axis has the
origin at the center of the disk. Then the single-layer model of
work [8] in the present case of the two-layer system can be
written as the third-order partial differential equations (PDEs)

,

, (1.2)

,

, (1.3)

with boundary conditions

, (1.4)

, (1.5)

, (1.6)

, (1.7)
and expression

(1.8)

for acoustic acceleration  (cp., Row 11 in Table 1.1). In the

Table 1.1. The input data for the model and method for each
disk in the TPD approximation.

The characteristics in Rows 2–8 and 11 generally dependent on the
parameter in Row 1. The characteristics in Rows 1–8 are the same for
each disk. They are assumed to be independent of time in each interval
comprising any three successive time points (see Row 9). The data in
Rows 9 and 10 can be specific to each disk. The data in Row 11 are
specific to each disk.

Notation Meaning

1  absolute temperature of AI

2 volumetric mass density of air (used as described in
Remark 1.2); it is 1.2 kg / m 3 at sea level

3 volumetric mass density of a continuous, non-porous
AI (used as described in Remark 1.2); it is 916.7 kg /
m 3 at zero EC

4 thickness of the BS layer

5  volumetric mass density of the BS

6  bulk modulus of the BS

7  stress-relaxation time in the BS

8 dependence of the speed of the bulk acoustic waves in
the AI layer (e.g., see (1.14))

9  number of the successive time points, at which
the acceleration was measured; ; this in-
equality allows to evaluate the third-order time
derivatives with the help of finite-difference
(FD) formulas 

10 successive time points, , at which the
acceleration values were measured

11 values of acoustic acceleration  at time points ,
; value  is the one at time point ; val-

ues  , , correspond to the NEC of the
operational-load-caused stress force in the BS layer
normal to the inner surface of the layer (cp., (1.8))

above relations,  and  are the NECs of
the ANS in the BS and AI layers, , , and  are the thick-
ness, volumetric mass density, and bulk modulus of the AI lay-
er,  and  are the SRTs of the BS and AI layers, and parame-
ters

, (1.9)

are the speeds of the bulk acoustic waves in these layers. In-
equality

(1.10)

holds because AI or, if it is absent, air, is not a vacuum. Note
that the bulk waves in a medium are understood in the present



work as the waves related to uniform compressions/rarefacti-
ons. Also note that scalar PDE (1.2) or (1.3) can be quantitati-
vely adequate only if the material is isotropic and the ratio of its
shear modulus to the bulk one is sufficiently small (or, equiva-
lently, the corresponding Poisson coefficient is not very far
from 0.5).

A necessary condition for the applicability of linear quasi-
equilibrium continuum-mechanics models such as acoustic
equations (1.2) and (1.3) are relations (e.g., [8, (2.3)])

, , (1.11)

respectively, where  and  is the NECs of the pressures,
which correspond to  and , respectively, and are coupled
with the latter by relations [8, (2.15)]

. (1.12)

. (1.13)

Expressions (1.12), (1.13), and inequalities (1.11) endow PDEs
(1.2) and (1.3) with the self-testing capabilities [8, pp. 5-6].

It is shown in [8, Section 2] that, in PDE (1.2) (or (1.3)), the
first term on the left-hand side and the multiplier “2” instead of
“1” on the right-hand side result from the stress-relaxation fun-
ction (SRF) in the Boltzmann superposition integral included in
a more general, partial integro-differential equation derived in
[8] (see [8, (2.10)]). The present forms of these terms corre-
spond to the simplest, exponential approximation for the SRF.

Equation (1.2) and boundary conditions (1.4)–(1.6) form
the boundary-value problem for the BS layer. Equation (1.3)
and boundary conditions (1.5)–(1.7) form the boundary-value
problem for the AI layer. These problems are mutually coupled
because of the coupling of the layers with (1.5) and (1.6). Thus,
(1.2)–(1.7) present a system of boundary-value problems. The
solution of this system is the steady-state one because the ope-
rational load is long-lasting or, in modeling terms, defined in
the entire time axis. Note that a steady-state solution of an
asymptotically stable ordinary differential equation (ODE) in
Euclidian space or a function Banach space is, loosely speak-
ing, its unique solution with an initial condition in the limit case
as the initial time point tends to  (e.g., see [11] for the
details). This solution is specified with function  in (1.8).

Remark 1.2. If the AI-layer parameters , , and  are avai-
lable, then the layer porosity  ( ), volume viscosity

, shear modulus , and shear viscosity  can be estimated as
, , , and ,

respectively, where  is the -dependence of the speed of
the transverse acoustic waves in the AI layer. The speed of the
longitudinal acoustic waves in the AI layer, , as a functi-
on of , can also be available. An experimental example of
both the dependences for dense snow (including AI) can be
found in [1, Fig. 2]. These data are related to the values of  in
the entire dense-snow interval, i.e. from 300 kg/m3 up to the
value in Row 3 of Table 1.1. Functions  and  enable
one to describe  in Row 8 of Table 1.1. Indeed, due to
(e.g., [10, (2.12), (2.14)])

. (1.14)

The aforementioned value  can be determined as

(1.15)

in terms of function (1.14). G
 

In view of Remark 1.2, the rest of the present work concen-
trates on identification of parameters , , , and . This is
carried out on the basis of boundary-value problem (1.2)–(1.7)
and relation (1.8).

2. SEPARATION OF THE BOUNDARY-VALUE PROBLEM

FOR THE BS LAYER FROM THE ONE FOR THE AI LAYER 

The treatment of the above boundary-value problem can be
simplified if one separates the BS-layer subproblem from the
AI-layer subproblem. This can be achieved by the following
change of variables

, , (2.1)

, , (2.2)

where  and  are the new variables, and

(2.3)

is an auxiliary function. Boundary conditions (1.4)–(1.7) for 
and  correspond to zero boundary conditions for  and , 

, (2.4)

. (2.5)

In view of (1.8) and (2.1),

(2.6)
where

. (2.7)

In the limit case as the AI-layer thickness  tends to zero, limit
relation

(2.8)

holds because of (2.1), (2.3), and (2.6).
Importantly, relations (2.3) and (2.6) enables one to express

a certain characteristic of the AI layer in terms of the related
characteristics of the skin layer, namely

(2.9)
where

. (2.10)

Application of (2.1) and (2.2) to PDEs (1.2) and (1.3), as
well as allowing for (2.6) lead to the BS and AI-layer PDEs

, , (2.11)

, . (2.12)

One can see that the change of variables (2.1), (2.2) allows
achieving the separation of the BS-layer boundary-value pro-
blem from the AI-layer. Indeed, in terms of new variables 
and , the BS-layer boundary-value problem (2.11), (2.7), (2.4)
is independent of the AY-layer boundary-value problem (2.12),
(2.7), (2.5).

Consequently, one can first reconstruct the solution of the
first problem by using already known function  in (2.7),
and then apply this function and the obtained solution to deter-
mine the solution of the second problem, which will allow to
regard equation (2.12) as the equation for identification of the
parameters , , , and .

The first and second parts of this program are considered in
Sections 3 and 4. The latter one uses the following three equati-
ons related to (2.12). In view of (2.1), the versions of PDE
(2.12) at  and  are



, (2.13)

. (2.14)

Also, differentiating (2.12) with respect to  and substituting
value  into the resulting equality, one obtains equation

.

Multiplication of it by  and substitution of (2.9) into the
left-hand side of the resulting equality lead to

,

. (2.15)

By introducing an appropriate approximation for the term in the
brackets on the right-hand side of (2.15), one can obtain a time-
varying algebraic equation for parameters to be identified, i.e.,

, , , and . This is considered in Section 4.

3. RECONSTRUCTION OF THE STEADY-STATE SOLUTION OF

THE BOUNDARY-VALUE PROBLEM FOR THE BS-LAYER

Change of variables (2.1), (2.2) not only allows the separa-
tion discussed in Section 2 but also provides homogeneous
boundary conditions (2.4), (2.5). Relations (2.4) enables one to
reconstruct the solution of the BS-layer boundary-value pro-
blem (2.11), (2.7), (2.4) by means of the Fourier method (e.g.,
[12, Chapters VIII and IX]). It provides expansions of solutions
of linear PDEs, which are based on the Laplace operator, in the
operator eigenfunctions (e.g., [13, Chapter V]).

The Laplace operator in the BS-layer PDE (2.11) is diffe-
rential expression  endowed with boundary conditions
(2.4). The eigenvalues and eigenfunctions for this operator are
well known (e.g., [12, pp. 118-119], [13, Chapter V, Section
22.4, (21)]. The eigenvalues are , , where

, , (3.1)

and the orthonormal eigenfunctions are

, , . (3.2)

According to the Fourier method, solutions of boundary-value
problem (2.11), (2.4) is presented in the form

, , (3.3)

where  are the time-dependent coefficients of the expan-
sion. Combining (3.1)–(3.3), one obtains

, (3.4)

. (3.5)

Since (2.11) includes the source function, which is linear
and homogeneous in , one also needs to consider the corre-
sponding expansions for these functions. By using (3.1), (3.2),
and the well-known results (e.g., [13, Sections 21.4 and 22.3 of
Chapter V], [14, 430.11]), one can show that the expansions are
the following:

, . (3.6)

Remark 3.1. The terms in the series in (3.6) contribute to both
the shape and integral over the corresponding -interval of the
function on the left-hand side. However, it appears that these
contributions are qualitatively different.

In view of (3.2), the terms in (3.6) with odd and even val-
ues of  are even and odd functions of , respectively.
This means that the even terms substantially contribute to the
correspondence of the shape of the -dependence on the right-
hand side of (3.6) to function  on the left-hand side.

Moreover, as follows from (3.6),

. (3.7)

The sum of the series on the right-hand side of (3.7) can be
evaluated as follows (e.g., [14, (48.12)])

. (3.8)

Relations (3.7) and (3.8) show that the terms with even values
of  do not contribute to the integral at all. They only, so to say,
correct the shape of the approximation formed by the pre-
ceding terms of the series. This means that, if the series is
approximated with the finite sum corresponding to the values of

 from unit to, say, , it is reasonable to do that at even .
One can also check that the integral can be approximated

with a very small relative error, say, of 5% when at least eight
terms of the series are taken into account. This indicates that 
should be not only even but also not less than eight. G

Since PDE (2.11), by means of (2.7), involves not only 
but also , which a value of the solution of the BS-
layer boundary-value problem, it is necessary to rewrite (2.11)
in the corresponding form, i.e.,

,

. (3.9)

Substitution of (3.3), (3.4), and (3.6) into (3.9) results in

, . (3.10)

Thus, coefficients  of the Fourier expansi-
on (3.3) are described with infinite-dimensional ODE system
(3.10). In practice, one can solve it in the finite-dimensional ap-
proximation. More specifically, at any , the th-approxi-
mation versions of (3.3)–(3.5) and (3.10) are

, , (3.11)

, (3.12)

, (3.13)



, . (3.14)

According to Remark 3.1, number  should be even and such
that .

As follows from Table 1.1, acoustic acceleration  in
(3.14) is available in the form of values measured in a
set of successive time points , , . Accordingly,
at each , one can consider values  of  at the
mentioned time points and express the time derivatives of func-
tions  and  by means of the corresponding FD for-
mulas. This will result in the system of  linear algebraic
equations with constant coefficients for  values ,

, . Assuming that the matrix of this system
is nonsingular, one can uniquely solve the system for the men-
tioned values.

Remark 3.2. The output data of the above solution procedure
are values and , , at points

, , which are evaluated as scalars   and  
by means of (2.7), (2.10), measured acoustic-acceleration val-
ues , expressions (3.12), (3.13), and the FD formulas based
on the obtained values . G

Remark 3.2 is used in the method described below.

4. EQUATION AND METHOD FOR IDENTIFICATION

OF THE FOUR PARAMETERS OF THE AI-LAYER

Equality (2.15) can be used for identification of the AI-lay-
er parameters , , , and  provided that one estimates the
term in the brackets on the right-hand side by means of avail-
able acoustic acceleration  or the parameters to be identifi-
ed. In order to do that, one can apply the approach developed in
[8, Section 4] for a single layer to the present case of the AI
layer in the two-layer, skin/AI system.

According to this approach, it can be sufficient to approxi-
mate  with the fourth-order polynomial

, , (4.1)

which has two -independent roots  and  accord-
ing to (2.5), and a pair of real or complex conjugate roots that
need not be -independent. In order to obtain the above esti-
mation, one can involve relations (2.9), (2.13), and (2.14), and,
thus, the -derivatives of (4.1) of the first, second, and third
orders. (The third-order derivative is used in (2.15).)

Differentiation of (4.1) three times in  and combining the
obtained derivatives of the first, second, and third orders with
relations (2.9), (2.13), and (2.14), one derives expression

. (4.2)

Application of (4.2) to the right-hand side of (2.15) transforms
the latter into

, , (4.3)

This is the equation for identification of the AI-layer parame-
ters , , , and .

One can emphasize the different roles of terms  and
 in (4.3) by moving the related terms to the right- and left-

hand sides, respectively. This results in

, , (4.4)

The form of this relation, as well as notations (2.7) and (2.10)
confirm that it is a relation for the two-layer system. Equation
(4.4) is a generalization of a single-layer equation [8, (4.2)] ob-
tained by means of the fourth-order-polynomial approximation
(4.1) (or [8, (4.1)]). Indeed, equation (4.4) regarded as an ODE
for  is analogous to the single-layer ODE [8, (4.2)]. The
structure of the left-hand side of (4.4) coincides with the one of
the left-hand side of [8, (4.2)]. However, in contrast to the
single-layer ODE, which is homogeneous, the two-layer ODE
(4.4) is nonhomogeneous: it is driven with the right-hand side
determined by term .

The identification method based on equation (4.3) described
below.

Dividing (4.3) by , one reduces it to the following more
compact form

, , (4.5)

where

, (4.6)

. (4.7)

The inequalities in (4.6) and (4.7) follow from (1.10) and the
inequality in (4.5). Equation (4.5) is the equation for identifica-
tion of parameters , , and . The input data for (4.5) are the
output data specified in Remark 3.2. 

If parameters  and  are available, then parameters , ,
and  can be determined uniquely. Indeed, as follows from
(4.6) and (4.7), . Since  can be presented
with dependence  (see the text on (1.14) and Row 8 of
Table 1.1), which is monotonically increasing, the indicated
equality enables one to determine  as the unique solution of
equation

. (4.8)

As soon as  is available,  and  are calculated with (1.15)
and (4.6) or (4.7), respectively. In turn, after the AI-layer para-
meters , , , and  are identified, the other parameters of
the layer can be determined in the way described in Remark
1.2. 

Note that, as follows from the inequality in (4.5), the equa-
tion in (4.5) is applicable at any . However, in view of
notations (4.6), (4.7), and relation (2.8), the equation becomes
an identity in the limit case as  and, thus, remains valid in
this limit case as well.

The left-hand side of (4.5) is a polynomial of the degree not
greater then three of three variables, parameters , , and .
Thus, it is in general a tri-linear function, i.e., linear in each of
the three variables. In general, the parameters can be identified



with the help of equation (4.5) in different ways. The simplest
one is evaluation of them from the equation system consisting
of the three versions of equation (4.5) at three successive time
points, say, , , and , , where, in each versi-
on, the time derivatives are replaced with the FD formulas
mentioned in Remark 3.2. This presumes that parameters , ,
and  are -independent in interval  and, thus, are
represented with their values , , and  specific to this
interval. These values are determined as the unique solution of
the mentioned system of the three tri-linear equations. This so-
lution is suitable only if (see (4.6) and (4.7)) , , and

. The determined values present the parameters identified
in interval .

Applying this procedure to the intervals corresponding to
each of , one obtains the piecewise-constant -depen-
dent approximations for the identified AI-layer parameters.
These -dependences include the influence of the operational
load upon the parameters.

In view of the approximate nature of the FD formulas used
in the proposed method, the -dependences can be rather irre-
gular. Consequently, they, in general, need to be “smoothed” in
order to provide the component, which is caused by the
operational load rather than the quantitative FD errors. The
“smoothing” method can be a topic for future research.

At each , the coefficients of the corresponding
system of three tri-linear equations completely determine many
of the properties of the system, for instance, the following.

• Does it have at least one suitable (see above) solution?
• If yes, how many solutions of this type exist?
• If more than one, how can one choose the most suitable?

These questions also present topics for future study. Some
of them can be contributed with practical methods. Tri-linear
systems are nonlinear. They can be solved with direct, non-
iterative techniques or iterative techniques. Direct methods are
not often applied to nonlinear systems because the correspond-
ing analytical treatments are available in exceptional cases
only. For this reason, it is much easier to use iterative methods.
Book [15] provides a comprehensive introduction in this field.

However, iterative methods are difficult to use in the real-
time computing because of at least two still unanswered questi-
ons.

• How can one assure unquestionable convergence of the
iterations to a solution of the nonlinear system?

• How can one choose the initial approximation such that the
resulting iterative approximations converge to the solution
of interest?

The related difficulties usually presume intervention of an
expert (e.g., a user) in the computational process. But these in-
terventions are inappropriate to the real-time mode. Due to that,
one can more closely consider direct methods. For example,
one of them can be based on the procedure similar the one
described in [8, the text on (4.5) and (4.6)]. The resulting
identification can be computationally efficient and relevant for
implementation in the real-time mode.

One more topic for future research is a calibration of the
proposed identification method with respect to the related expe-
rimental data.

5. CONCLUSION

The present work generalizes the approach to a thin single
solid layer (documented in one of the previous papers of the
authors) for the case of a thin two-layer system, which compri-
ses the BS and AI layers. They are assumed to be isotropic and
isothermal. The work considers a passive sensing with wireless
lowpass single-axis acoustic accelerometers, which are located
at the centers of the mutually non-intersecting low-curvature
disk-shape regions on the inner surface of the BS and measure

acoustic accelerations, which are normal to the surface and
caused by the operational load in the BS. The work develops
the acoustic model based on the third-order PDE and the
resulting from it method for identification of the following eight
parameters of the AI-layer: the thickness, volumetric mass
density, bulk and shear moduli, SRT, porosity, and volume and
shear viscosities. The identification method is computationally
efficient and can be suitable for implementation in the real-time
mode. The proposed identification model and method enrich the
scope of structural health monitoring of systems with the identi-
fication of material parameters of the thin-layer components.
The work also suggests a few directions for future research.
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